Azpilicueta Fernández de las Heras, Leyre

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Azpilicueta Fernández de las Heras

First Name

Leyre

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 60
  • PublicationOpen Access
    From 2G to 5G spatial modeling of personal RF-EMF exposure within urban public trams
    (IEEE, 2020) Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Karpowicz, Jolanta; López Iturri, Peio; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    The upcoming design and implementation of the new generation of 5G cellular systems, jointly with the multiple wireless communication systems that nowadays coexist within vehicular environments, leads to Heterogeneous Network challenging urban scenarios. In this framework, user's Radiofrequency Electromagnetic Fields (RF-EMF) radiation exposure assessment is pivotal, to verify compliance with current legislation thresholds. In this work, an in-depth study of the E-field characterization of the personal mobile communications within urban public trams is presented, considering different cellular technologies (from 2G to 5G). Specifically, frequency bands in the range of 5G NR frequency range 1 (FR1) and millimeter wave (mm-wave) bands within frequency range 2 (FR2) have been analyzed for 5G scenarios, considering their dispersive material properties. A simulation approach is presented to assess user mobile phone base station up-link radiation exposure, considering all the significant features of urban transportation trams in terms of structure morphology and topology or the materials employed. In addition, different user densities have been considered at different frequency bands, from 2G to 5G (FR1 and FR2), by means of an in-house developed deterministic 3D Ray-Launching (3D-RL) technique in order to provide clear insight spatial E-field distribution, including the impact in the use of directive antennas and beamforming techniques, within realistic operation conditions. Discussion in relation with current exposure limits have been presented, showing that for all cases, E-Field results are far below the maximum reference levels established by the ICNIRP guidelines. By means of a complete E-field campaign of measurements, performed with both, a personal exposimeter (PEM) and a spectrum analyzer within a real tram wagon car, the proposed methodology has been validated showing good agreement with the experimental measurements. In consequence, a simulation-based analysis methodology for dosimetry estimation is provided, aiding in the assessment of current and future cellular deployments in complex heterogeneous vehicular environments.
  • PublicationOpen Access
    Impedance bandwidth improvement of a planar antenna based on metamaterial-inspired T-matching network
    (IEEE, 2021) Alibakhshikenari, Mohammad; Virdee, Bal S.; Shukla, Panchamkumar; Wang, Yan; Azpilicueta Fernández de las Heras, Leyre; Naser Moghadasi, Mohammad; See, Chan H.; Elfergani, Issa; Zebiri, Chemseddine; Abd-Alhameed, Raed; Huynen, Isabelle; Rodriguez, Jonathan; Denidni, Tayeb A.; Falcone Lanas, Francisco; Limiti, Ernesto; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In this paper a metamaterial-inspired T-matching network is directly imbedded inside the feedline of a microstrip antenna to realize optimum power transfer between the front-end of an RF Wireless transceiver and the antenna. The proposed T-matching network, which is composed of an arrangement of series capacitor, shunt inductor, series capacitor, exhibits left-handed metamaterial characteristics. The matching network is first theoretically modelled to gain insight of its limitations. It was then implemented directly in the 50-Ω feedline to a standard circular patch antenna, which is an unconventional methodology. The antenna’s performance was verified through measurements. With the proposed technique there is 2.7 dBi improvement in the antenna’s radiation gain and 12% increase in the efficiency at the center frequency,and this is achieved over a significantly wider frequency range by a factor of approximately twenty. Moreover, there is good correlation between the theoretical model, method of moments simulation, and the measurement results.
  • PublicationOpen Access
    Deterministic wireless channel characterization towards the integration of communication capabilities to enable context aware industrial internet of thing environments
    (Springer, 2022) Picallo Guembe, Imanol; López Iturri, Peio; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In order to provide interactive capabilities within the context of Internet of Thing (IoT) applications, wireless communication systems play a key role, owing to in-herent mobility, ubiquity and ease of deployment. However, to comply with Quality of Service (QoS) and Quality of Experience (QoE) metrics, coverage/capacity analysis must be performed, to account for the impact of signal blockage as well as multiple interference sources. This analysis is especially complex in the case of indoor scenarios, such as those derived from Industrial Internet of Things (IIoT). In this work, a fully volumetric approach based on hybrid deterministic 3D Ray Launching is employed providing precise wireless channel characterization and hence, system level analysis of indoor scenarios. Coverage/capacity, interference mapping and time domain characterization estimations will be derived, considering different frequencies of operation below 6 GHz. The proposed methodology will be tested against a real measurement scenario, providing full flexibility and scalability for adoption in a wide range of IIoT capable environments.
  • PublicationOpen Access
    Analysis of interaction mechanisms and intercomparison of raytracing tools for optimizing THz simulations
    (IEEE, 2025-03-11) Aksoy, Enes; Schultze, Alper; Fazli, Abdolvakil; Raschkowski, Leszek; Azpilicueta Fernández de las Heras, Leyre; Celaya Echarri, Mikel; Navarro Cía, Miguel; Stanczak, Slawomir; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    This paper quantifies the weight of the different physical mechanisms (reflection, diffraction, and scattering) in a typical indoor THz wireless communication environment and provides an intercomparison of raytracing tools. Two state-of-the-art raytracing tools - Wireless InSite and Sionna - are utilized to analyze the capabilities of currently available open-source and commercial raytracing engines for THz simulations. A channel sounder measurement campaign at 300 GHz was conducted in a conference room at Fraunhofer HHI, which is used to validate the raytracing simulations. Additionally, the measurements are compared to a proprietary raytracer, optimized for THz simulations. This paper presents a guideline to increase the capabilities of state-of-the-art raytracing tools, to obtain good results for high frequency simulations. The comparisons show, that currently used raytracing tools are not sufficiently accurate for THz simulations. However, these inaccuracies can be mitigated by the implementation of new features, such as the inclusion of different scattering mechanisms and the incorporation of atmospheric attenuation, while utilizing precise geometry and accurate material parameter models.
  • PublicationOpen Access
    Spatial characterization of personal RF-EMF exposure in public transportation buses
    (IEEE, 2019) Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Aguirre Gallego, Erik; Miguel Bilbao, Silvia de; Ramos, Victoria; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    New services and applications within vehicular environments employ multiple wireless communication systems, within a Heterogeneous Network framework. In this context, evaluation of electromagnetic field impact is compulsory, in order to warrant compliance with current exposure limits. In this work, E-field strength distribution within urban transportation buses is studied, in which different types of buses as well as network configurations are considered. E-field estimations are obtained within the complete interior volume of the urban buses, considering all of the characteristics in terms of bus structure and materials employed, by means of an in-house developed deterministic 3D Ray-Launching (3D-RL) code. In this way, relevant phenomena in terms of electromagnetic propagation and interaction are considered, such as multipath propagation and shadowing, which determine exposure levels as a function of transceiver location within the bus scenarios. The behavior in terms of E-field distribution of wireless Public Land Mobile communication systems within transportation buses have been analyzed by means of measurement campaigns employing personal exposimeter devices. In addition, E-field volumetric distributions by means of 3D-RL simulations have been obtained as a function of user distribution within the buses, with the aim of analyzing the impact of user presence within complex intra-vehicular indoor scenarios such as urban transportation buses. A comparison with current exposure limits given by currently adopted standards is obtained, showing that E-field levels were below the aforementioned limits. The use of deterministic simulation techniques based on 3D-RL enables E-field exposure analysis in complex indoor scenarios, offering an optimized balance between accuracy and computational cost. These results and the proposed simulation methodology, can aid in an adequate assessment of human exposure to non-ionizing radiofrequency fields in public transportation buses, considering the impact of the morphology and the topology of vehicles, for current as well as for future wireless technologies and exposure limits.
  • PublicationOpen Access
    A comprehensive survey of 'metamaterial transmission-line based antennas: design, challenges, and applications'
    (IEEE, 2020) Alibakhshikenari, Mohammad; Virdee, Bal S.; Azpilicueta Fernández de las Heras, Leyre; Naser Moghadasi, Mohammad; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this review paper, a comprehensive study on the concept, theory, and applications of composite right/left-handed transmission lines (CRLH-TLs) by considering their use in antenna system designs have been provided. It is shown that CRLH-TLs with negative permittivity (< 0) and negative permeability (μ < 0) have unique properties that do not occur naturally. Therefore, they are referred to as artificial structures called 'metamaterials'. These artificial structures include series left-handed (LH) capacitances (CL), shunt LH inductances (LL), series right-handed (RH) inductances (LR), and shunt RH capacitances (CR) that are realized by slots or interdigital capacitors, stubs or via-holes, unwanted current flowing on the surface, and gap distance between the surface and ground-plane, respectively. In the most cases, it is also shown that structures based on CRLH metamaterial-TLs are superior than their conventional alternatives, since they have smaller dimensions, lower-profile, wider bandwidth, better radiation patterns, higher gain and efficiency, which make them easier and more cost-effective to manufacture and mass produce. Hence, a broad range of metamaterial-based design possibilities are introduced to highlight the improvement of the performance parameters that are rare and not often discussed in available literature. Therefore, this survey provides a wide overview of key early-stage concepts of metematerial-based designs as a thorough reference for specialist antennas and microwave circuits designers. To analyze the critical features of metamaterial theory and concept, several examples are used. Comparisons on the basis of physical size, bandwidth, materials, gain, efficiency, and radiation patterns are made for all the examples that are based on CRLH metamaterial-TLs. As revealed in all the metematerial design examples, foot-print area decrement is an important issue of study that have a strong impact for the enlargement of the next generation wireless communication systems.
  • PublicationOpen Access
    Development of a cognitive IoT-enabled Smart Campus
    (IEEE, 2024-08-23) Picallo Guembe, Imanol; Klaina, Hicham; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Celaya Echarri, Mikel; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ciencias; Zientziak; Institute of Smart Cities - ISC
    The evolution from Smart to Cognitive Cities takes advantage, among others, of advanced communication technologies in order to increase interactivity levels. In this work, an analysis of wireless connectivity within the framework of a Smart Campus pilot at the Public University of Navarra in Spain is presented. By means of in-house implemented hybrid deterministic code, multiple wireless connectivity conditions with different operating frequencies are presented. The use of these tools provides accurate coverage/capacity analysis of large, complex scenarios, aiding in the design of network devices as well as overall network topology in order to optimize overall performance.
  • PublicationOpen Access
    Challenges in wireless system integration as enablers for indoor context aware environments
    (MDPI, 2017) López Iturri, Peio; Aguirre Gallego, Erik; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa eta Elektronikoa; Matematika eta Informatika Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Ingeniería Matemática e Informática
    The advent of fully interactive environments within Smart Cities and Smart Regions requires the use of multiple wireless systems. In the case of user-device interaction, which finds multiple applications such as Ambient Assisted Living, Intelligent Transportation Systems or Smart Grids, among others, large amount of transceivers are employed in order to achieve anytime, anyplace and any device connectivity. The resulting combination of heterogeneous wireless network exhibits fundamental limitations derived from Coverage/Capacity relations, as a function of required Quality of Service parameters, required bit rate, energy restrictions and adaptive modulation and coding schemes. In this context, inherent transceiver density poses challenges in overall system operation, given by multiple node operation which increases overall interference levels. In this work, a deterministic based analysis applied to variable density wireless sensor network operation within complex indoor scenarios is presented, as a function of topological node distribution. The extensive analysis derives interference characterizations, both for conventional transceivers as well as wearables, which provide relevant information in terms of individual node configuration as well as complete network layout.
  • PublicationOpen Access
    Empirical and modeling approach for environmental indoor RF-EMF assessment in complex high-node density scenarios: public shopping malls case study
    (IEEE, 2021) Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Ramos, Victoria; López Iturri, Peio; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    This work provides an intensive and comprehensive in-depth study from an empirical and modeling approach of the environmental radiofrequency electromagnetic fields (RF-EMF) radiation exposure in public shopping malls, as an example of an indoor high-node user density context aware environment, where multiple wireless communication systems coexist. For that purpose, current personal mobile communications (2G-5G FR 1) as well as Wi-Fi services (IEEE 802.11n/ac) have been precisely analyzed in order to provide clear RF-EMF assessment insight and to verify compliance with established regulation limits. In this sense, a complete measurements campaign has been performed in different countries, with frequency-selective exposimeters (PEMs), providing real empirical datasets for statistical analysis and allowing discussion and comparison regarding current health effects and safety issues between some of the most common RF-EMF exposure safety standards: ICNIRP 2020 (Spain), IEEE 2019 (Mexico) and a more restrictive regulation (Poland). In addition, environmental RF-EMF exposure assessment simulation results, in terms of spatial E-field characterization and Cumulative Distribution Function (CDF) probabilities, have been provided for challenging incremental high-node user dense scenarios in worst case conditions, by means of a deterministic in-house 3D Ray-Launching (3D-RL) RF-EMF safety simulation technique, showing good agreement with the experimental measurements. Finally, discussion highlighting the contribution and effects of the coexistence of multiple heterogenous networks and services for the environmental RF-EMF radiation exposure assessment has been included, showing that for all measured results and simulated cases, the obtained E-Field levels are well below the exposure limits established in the internationally accepted standards and guidelines. In consequence, the obtained results and the presented methodology could become a starting point to stablish the RF-EMF assessment basis of future complex heterogeneous 5G FR 2 developments on the millimeter wave (mmWave) frequency range, where massive high-node user density networks are expected.
  • PublicationOpen Access
    Optimum power transfer in RF front end systems using adaptive impedance matching technique
    (Nature Research, 2021) Alibakhshikenari, Mohammad; Virdee, Bal S.; Azpilicueta Fernández de las Heras, Leyre; See, Chan H.; Abd-Alhameed, Raed; Althuwayb, Ayman Abdulhadi; Falcone Lanas, Francisco; Huynen, Isabelle; Denidni, Tayeb A.; Limiti, Ernesto; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    Matching the antenna’s impedance to the RF-front-end of a wireless communications system is challenging as the impedance varies with its surround environment. Autonomously matching the antenna to the RF-front-end is therefore essential to optimize power transfer and thereby maintain the antenna’s radiation efficiency. This paper presents a theoretical technique for automatically tuning an LC impedance matching network that compensates antenna mismatch presented to the RF-front-end. The proposed technique converges to a matching point without the need of complex mathematical modelling of the system comprising of non-linear control elements. Digital circuitry is used to implement the required matching circuit. Reliable convergence is achieved within the tuning range of the LC-network using control-loops that can independently control the LC impedance. An algorithm based on the proposed technique was used to verify its effectiveness with various antenna loads. Mismatch error of the technique is less than 0.2%. The technique enables speedy convergence (< 5 µs) and is highly accurate for autonomous adaptive antenna matching networks.