Person: Valle Turrillas, Jaione
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Valle Turrillas
First Name
Jaione
person.page.departamento
Producción Agraria
person.page.instituteName
ORCID
0000-0003-3115-0207
person.page.upna
811057
Name
31 results
Search Results
Now showing 1 - 10 of 31
Publication Open Access Lack of the PGA exopolysaccharide in Salmonella as an adaptive trait for survival in the host(Public Library of Science, 2017) Echeverz Sarasúa, Maite; García Martínez, Begoña; Sabalza Baztán, Amaia; Valle Turrillas, Jaione; Gabaldón Estevan, Juan Antonio; Solano Goñi, Cristina; Lasa Uzcudun, Íñigo; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaMany bacteria build biofilm matrices using a conserved exopolysaccharide named PGA or PNAG (poly-β-1,6-N-acetyl-D-glucosamine). Interestingly, while E. coli and other members of the family Enterobacteriaceae encode the pgaABCD operon responsible for PGA synthesis, Salmonella lacks it. The evolutionary force driving this difference remains to be determined. Here, we report that Salmonella lost the pgaABCD operon after the divergence of Salmonella and Citrobacter clades, and previous to the diversification of the currently sequenced Salmonella strains. Reconstitution of the PGA machinery endows Salmonella with the capacity to produce PGA in a cyclic dimeric GMP (c-di-GMP) dependent manner. Outside the host, the PGA polysaccharide does not seem to provide any significant benefit to Salmonella: resistance against chlorine treatment, ultraviolet light irradiation, heavy metal stress and phage infection remained the same as in a strain producing cellulose, the main biofilm exopolysaccharide naturally produced by Salmonella. In contrast, PGA production proved to be deleterious to Salmonella survival inside the host, since it increased susceptibility to bile salts and oxidative stress, and hindered the capacity of S. Enteritidis to survive inside macrophages and to colonize extraintestinal organs, including the gallbladder. Altogether, our observations indicate that PGA is an antivirulence factor whose loss may have been a necessary event during Salmonella speciation to permit survival inside the host.Publication Open Access Base pairing interaction between 5′- and 3′-UTRs controls icaR mRNA translation in Staphylococcus aureus(Public Library of Science, 2013) Ruiz de los Mozos Aliaga, Igor; Vergara Irigaray, Marta; Segura, Víctor; Villanueva San Martín, Maite; Bitarte Manzanal, Nerea; Saramago, Margarida; Domingues, Susana; Arraiano, Cecilia M.; Fechter, Pierre; Romby, Pascale; Valle Turrillas, Jaione; Solano Goñi, Cristina; Lasa Uzcudun, Íñigo; Toledo Arana, Alejandro; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaThe presence of regulatory sequences in the 39 untranslated region (39-UTR) of eukaryotic mRNAs controlling RNA stability and translation efficiency is widely recognized. In contrast, the relevance of 39-UTRs in bacterial mRNA functionality has been disregarded. Here, we report evidences showing that around one-third of the mapped mRNAs of the major human pathogen Staphylococcus aureus carry 39-UTRs longer than 100-nt and thus, potential regulatory functions. We selected the long 39-UTR of icaR, which codes for the repressor of the main exopolysaccharidic compound of the S. aureus biofilm matrix, to evaluate the role that 39-UTRs may play in controlling mRNA expression. We showed that base pairing between the 39- UTR and the Shine-Dalgarno (SD) region of icaR mRNA interferes with the translation initiation complex and generates a double-stranded substrate for RNase III. Deletion or substitution of the motif (UCCCCUG) within icaR 39-UTR was sufficient to abolish this interaction and resulted in the accumulation of IcaR repressor and inhibition of biofilm development. Our findings provide a singular example of a new potential post-transcriptional regulatory mechanism to modulate bacterial gene expression through the interaction of a 39-UTR with the 59-UTR of the same mRNA.Publication Open Access Structural mechanism for modulation of functional amyloid and biofilm formation by Staphylococcal Bap protein switch(EMBO Press, 2021) Ma, Junfeng; Cheng, Xiang; Xu, Zhonghe; Zhang, Yikan; Valle Turrillas, Jaione; Fan, Xianyang; Lasa Uzcudun, Íñigo; Ciencias de la Salud; Osasun ZientziakThe Staphylococcal Bap proteins sense environmental signals (such as pH, [Ca2+]) to build amyloid scaffold biofilm matrices via unknown mechanisms. We here report the crystal structure of the aggregation-prone region of Staphylococcus aureus Bap which adopts a dumbbell-shaped fold. The middle module (MM) connecting the N-terminal and C-terminal lobes consists of a tandem of novel double-Ca2+-binding motifs involved in cooperative interaction networks, which undergoes Ca2+-dependent order–disorder conformational switches. The N-terminal lobe is sufficient to mediate amyloid aggregation through liquid–liquid phase separation and maturation, and subsequent biofilm formation under acidic conditions. Such processes are promoted by disordered MM at low [Ca2+] but inhibited by ordered MM stabilized by Ca2+ binding, with inhibition efficiency depending on structural integrity of the interaction networks. These studies illustrate a novel protein switch in pathogenic bacteria and provide insights into the mechanistic understanding of Bap proteins in modulation of functional amyloid and biofilm formation, which could be implemented in the anti-biofilm drug design.Publication Open Access Genome-wide antisense transcription drives mRNA processing in bacteria(National Academy of Sciences, 2011) Lasa Uzcudun, Íñigo; Toledo Arana, Alejandro; Dobin, Alexander; Villanueva San Martín, Maite; Ruiz de los Mozos Aliaga, Igor; Vergara Irigaray, Marta; Segura, Víctor; Fagegaltier, Delphine; Penadés, José R.; Valle Turrillas, Jaione; Solano Goñi, Cristina; Gingeras, Thomas R.; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaRNA deep sequencing technologies are revealing unexpected levels of complexity in bacterial transcriptomes with the discovery of abundant noncoding RNAs, antisense RNAs, long 5′ and 3′ untranslated regions, and alternative operon structures. Here, by applying deep RNA sequencing to both the long and short RNA fractions (<50 nucleotides) obtained from the major human pathogen Staphylococcus aureus, we have detected a collection of short RNAs that is generated genome-wide through the digestion of overlapping sense/antisense transcripts by RNase III endoribonuclease. At least 75% of sense RNAs from annotated genes are subject to this mechanism of antisense processing. Removal of RNase III activity reduces the amount of short RNAs and is accompanied by the accumulation of discrete antisense transcripts. These results suggest the production of pervasive but hidden antisense transcription used to process sense transcripts by means of creating double-stranded substrates. This process of RNase III-mediated digestion of overlapping transcripts can be observed in several evolutionarily diverse Gram-positive bacteria and is capable of providing a unique genome-wide posttranscriptional mechanism to adjust mRNA levels.Publication Open Access Antibiofilm activity of flavonoids on staphylococcal biofilms through targeting BAP amyloids(Nature Research, 2020) Matilla Cuenca, Leticia; Gil Puig, Carmen; Cuesta Ferre, Sergio; Rapún Araiz, Beatriz; Mira, Alex; Lasa Uzcudun, Íñigo; Valle Turrillas, Jaione; Ziemité, Miglé; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua, PI011 KILL-BACTThe opportunistic pathogen Staphylococcus aureus is responsible for causing infections related to indwelling medical devices, where this pathogen is able to attach and form biofilms. The intrinsic properties given by the self-produced extracellular biofilm matrix confer high resistance to antibiotics, triggering infections difficult to treat. Therefore, novel antibiofilm strategies targeting matrix components are urgently needed. The biofilm associated protein, Bap, expressed by staphylococcal species adopts functional amyloid-like structures as scaffolds of the biofilm matrix. In this work we have focused on identifying agents targeting Bap-related amyloid-like aggregates as a strategy to combat S. aureus biofilm-related infections. We identified that the flavonoids, quercetin, myricetin and scutellarein specifically inhibited Bap-mediated biofilm formation of S. aureus and other staphylococcal species. By using in vitro aggregation assays and the cell-based methodology for generation of amyloid aggregates based on the Curli-Dependent Amyloid Generator system (C-DAG), we demonstrated that these polyphenols prevented the assembly of Bap-related amyloid-like structures. Finally, using an in vivo catheter infection model, we showed that quercetin and myricetin significantly reduced catheter colonization by S. aureus. These results support the use of polyphenols as anti-amyloids molecules that can be used to treat biofilm-related infections.Publication Open Access Bap, a Staphylococcus aureus surface protein involved in biofilm formation(American Society for Microbiology, 2001) Cucarella, Carme; Solano Goñi, Cristina; Valle Turrillas, Jaione; Amorena Zabalza, Beatriz; Lasa Uzcudun, Íñigo; Penadés, José R.; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako GobernuaIdentification of new genes involved in biofilm formation is needed to understand the molecular basis of strain variation and the pathogenic mechanisms implicated in chronic staphylococcal infections. A biofilm-producing Staphylococcus aureus isolate was used to generate biofilm-negative transposon (Tn917) insertion mutants. Two mutants were found with a significant decrease in attachment to inert surfaces (early adherence), intercellular adhesion, and biofilm formation. The transposon was inserted at the same locus in both mutants. This locus (bap [for biofilm associated protein]) encodes a novel cell wall associated protein of 2,276 amino acids (Bap), which shows global organizational similarities to surface proteins of gram-negative (Pseudomonas aeruginosa andSalmonella enterica serovar Typhi) and gram-positive (Enteroccocus faecalis) microorganisms. Bap's core region represents 52% of the protein and consists of 13 successive nearly identical repeats, each containing 86 amino acids. bap was present in a small fraction of bovine mastitis isolates (5% of the 350S. aureus isolates tested), but it was absent from the 75 clinical human S. aureus isolates analyzed. All staphylococcal isolates harboring bap were highly adherent and strong biofilm producers. In a mouse infection modelbap was involved in pathogenesis, causing a persistent infection.Publication Open Access A systematic evaluation of the two-component systems network reveals that ArlRS is a key regulator of catheter colonization by Staphylococcus aureus(Frontiers Media, 2018) Burgui Erice, Saioa; Gil Puig, Carmen; Solano Goñi, Cristina; Lasa Uzcudun, Íñigo; Valle Turrillas, Jaione; Ciencias de la Salud; Osasun ZientziakTwo-component systems (TCS) are modular signal transduction pathways that allow cells to adapt to prevailing environmental conditions by modifying cellular physiology. Staphylococcus aureus has 16 TCSs to adapt to the diverse microenvironments encountered during its life cycle, including host tissues and implanted medical devices. S. aureus is particularly prone to cause infections associated to medical devices, whose surfaces coated by serum proteins constitute a particular environment. Identification of the TCSs involved in the adaptation of S. aureus to colonize and survive on the surface of implanted devices remains largely unexplored. Here, using an in vivo catheter infection model and a collection of mutants in each non-essential TCS of S. aureus, we investigated the requirement of each TCS for colonizing the implanted catheter. Among the 15 mutants in non-essential TCSs, the arl mutant exhibited the strongest deficiency in the capacity to colonize implanted catheters. Moreover, the arl mutant was the only one presenting a major deficit in PNAG production, the main exopolysaccharide of the S. aureus biofilm matrix whose synthesis is mediated by the icaADBC locus. Regulation of PNAG synthesis by ArlRS occurred through repression of IcaR, a transcriptional repressor of icaADBC operon expression. Deficiency in catheter colonization was restored when the arl mutant was complemented with the icaADBC operon. MgrA, a global transcriptional regulator downstream ArlRS that accounts for a large part of the arlRS regulon, was unable to restore PNAG expression and catheter colonization deficiency of the arlRS mutant. These findings indicate that ArlRS is the key TCS to biofilm formation on the surface of implanted catheters and that activation of PNAG exopolysaccharide production is, among the many traits controlled by the ArlRS system, a major contributor to catheter colonization.Publication Open Access Protein A-mediated multicellular behavior in Staphylococcus aureus(American Society for Microbiology, 2008) Merino Barberá, Nekane; Toledo Arana, Alejandro; Vergara Irigaray, Marta; Valle Turrillas, Jaione; Solano Goñi, Cristina; Calvo, Enrique; Lopez, Juan Antonio; Foster, Timothy J.; Penadés, José R.; Lasa Uzcudun, Íñigo; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaThe capacity of Staphylococcus aureus to form biofilms on host tissues and implanted medical devices is one of the major virulence traits underlying persistent and chronic infections. The matrix in which S. aureus cells are encased in a biofilm often consists of the polysaccharide intercellular adhesin (PIA) or poly-N-acetyl glucosamine (PNAG). However, surface proteins capable of promoting biofilm development in the absence of PIA/PNAG exopolysaccharide have been described. Here, we used two-dimensional nano-liquid chromatography and mass spectrometry to investigate the composition of a proteinaceous biofilm matrix and identified protein A (spa) as an essential component of the biofilm; protein A induced bacterial aggregation in liquid medium and biofilm formation under standing and flow conditions. Exogenous addition of synthetic protein A or supernatants containing secreted protein A to growth media induced biofilm development, indicating that protein A can promote biofilm development without being covalently anchored to the cell wall. Protein A-mediated biofilm formation was completely inhibited in a dose-dependent manner by addition of serum, purified immunoglobulin G, or anti-protein A-specific antibodies. A murine model of subcutaneous catheter infection unveiled a significant role for protein A in the development of biofilm-associated infections, as the amount of protein A-deficient bacteria recovered from the catheter was significantly lower than that of wild-type bacteria when both strains were used to coinfect the implanted medical device. Our results suggest a novel role for protein A complementary to its known capacity to interact with multiple immunologically important eukaryotic receptors.Publication Open Access Relative contribution of P5 and hap surface proteins to nontypable haemophilus influenzae interplay with the host upper and lower airways(Public Library of Science, 2015) Euba, Begoña; Moleres Apilluelo, Javier; Viadas Martínez, Cristina; Ruiz de los Mozos Aliaga, Igor; Valle Turrillas, Jaione; Bengoechea Alonso, José Antonio; Garmendia García, Juncal; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua, 359/2012Nontypable Haemophilus influenzae (NTHi) is a major cause of opportunistic respiratory tract disease, and initiates infection by colonizing the nasopharynx. Bacterial surface proteins play determining roles in the NTHi-airways interplay, but their specific and relative contribution to colonization and infection of the respiratory tract has not been addressed comprehensively. In this study, we focused on the ompP5 and hap genes, present in all H. influenzae genome sequenced isolates, and encoding the P5 and Hap surface proteins, respectively. We employed isogenic single and double mutants of the ompP5 and hap genes generated in the pathogenic strain NTHi375 to evaluate P5 and Hap contribution to biofilm growth under continuous flow, to NTHi adhesion, and invasion/phagocytosis on nasal, pharyngeal, bronchial, alveolar cultured epithelial cells and alveolar macrophages, and to NTHi murine pulmonary infection.We show that P5 is not required for bacterial biofilm growth, but it is involved in NTHi interplay with respiratory cells and in mouse lung infection. Mechanistically, P5NTHi375 is not a ligand for CEACAM1 or α5 integrin receptors. Hap involvement in NTHi375-host interaction was shown to be limited, despite promoting bacterial cell adhesion when expressed in H. influenzae RdKW20.We also show that Hap does not contribute to bacterial biofilm growth, and that its absence partially restores the deficiency in lung infection observed for the ΔompP5 mutant. Altogether, this work frames the relative importance of the P5 and Hap surface proteins in NTHi virulence.Publication Open Access Global assessment of small RNAs reveals a non-coding transcript involved in biofilm formation and attachment in Acinetobacter baumannii ATCC 17978(Public Library of Science, 2017) Álvarez Fraga, Laura; Rumbo Feal, Soraya; Pérez, Astrid; Gómez, Manuel J.; Valle Turrillas, Jaione; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaMany strains of Acinetobacter baumannii have been described as being able to form biofilm. Small non-coding RNAs (sRNAs) control gene expression in many regulatory circuits in bacteria. The aim of the present work was to provide a global description of the sRNAs produced both by planktonic and biofilm-associated (sessile) cells of A. baumannii ATCC 17978, and to compare the corresponding gene expression profiles to identify sRNAs molecules associated to biofilm formation and virulence. sRNA was extracted from both planktonic and sessile cells and reverse transcribed. cDNA was subjected to 454-pyrosequencing using the GS-FLX Titanium chemistry. The global analysis of the small RNA transcriptome revealed different sRNA expression patterns in planktonic and biofilm associated cells, with some of the transcripts only expressed or repressed in sessile bacteria. A total of 255 sRNAs were detected, with 185 of them differentially expressed in the different types of cells. A total of 9 sRNAs were expressed only in biofilm cells, while the expression of other 21 coding regions were repressed only in biofilm cells. Strikingly, the expression level of the sRNA 13573 was 120 times higher in biofilms than in planktonic cells, an observation that prompted us to further investigate the biological role of this non-coding transcript. Analyses of an isogenic mutant and over-expressing strains revealed that the sRNA 13573 gene is involved in biofilm formation and attachment to A549 human alveolar epithelial cells. The present work serves as a basis for future studies examining the complex regulatory network that regulate biofilm biogenesis and attachment to eukaryotic cells in A. baumannii ATCC 17978.