Royuela Hernando, Mercedes

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Royuela Hernando

First Name

Mercedes

person.page.departamento

Ciencias

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 18
  • PublicationOpen Access
    The moderate oxidative stress induced by glyphosate is not detected in Amaranthus palmeri plants overexpressing EPSPS
    (Elsevier, 2022) Gil Monreal, Miriam; Barco Antoñanzas, María; Zabalza Aznárez, Ana; Royuela Hernando, Mercedes; Eceiza, Mikel Vicente; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The present study aimed to determine whether glyphosate-induced oxidative stress is directly related to the action mechanism of this herbicide (5-enolpyruvylshikimate-3-phosphate synthase or EPSPS inhibition) and analyse the role of oxidative stress in glyphosate toxicity of the weed Amaranthus palmeri S. Wats. Two kinds of populations were studied using EPSPS amplification: glyphosate-sensitive and glyphosate-resistant (by gene amplification). Plants were grown hydroponically and treated with different glyphosate doses, after which several oxidative stress markers were measured in the leaves. Untreated, sensitive and resistant plants showed similar values for the analysed parameters. Treated glyphosate-sensitive plants showed an increase in shikimate, superoxide and H2O2 contents and dose-dependent lipid peroxidation and antioxidant responses; however, none of these effects were observed in resistant plants, indicating that glyphosate-induced oxidative stress is related to EPSPS inhibition. Oxidative stress is associated with an increase in the activity of peroxidases due to EPSPS inhibition, although the link between both processes remains elusive. The fact that some glyphosate doses were lethal but did not induce major oxidative damage provides evidence that glyphosate toxicity is independent of oxidative stress.
  • PublicationOpen Access
    Fermentation and alternative oxidase contribute to the action of amino acid biosynthesis-inhibiting herbicides
    (Elsevier, 2015) Zulet González, Amaia; Gil Monreal, Miriam; Zabalza Aznárez, Ana; Dongen, Joost T. van; Royuela Hernando, Mercedes; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Acetolactate synthase inhibitors (ALS-inhibitors) and glyphosate (GLP) are two classes of herbicide that act by the specific inhibition of an enzyme in the biosynthetic pathway of branched-chain or aromatic amino acids, respectively. The physiological effects that are detected after application of these two classes of herbicides are not fully understood in relation to the primary biochemical target inhibition, although they have been well documented. Interestingly, the two herbicides’ toxicity includes some common physiological effects suggesting that they kill the treated plants by a similar pattern despite targeting different enzymes. The induction of aerobic ethanol fermentation and alternative oxidase (AOX) are two examples of these common effects. The objective of this work was to gain further insight into the role of fermentation and AOX induction in the toxic consequences of ALS-inhibitors and GLP. For this, Arabidopsis T-DNA knockout mutants of alcohol dehydrogenase (ADH) 1 and AOX1a were used. The results found in wild-type indicate that both GLP and ALS-inhibitors reduce ATP production by inducing fermentation and alternative respiration. The main physiological effects in the process of herbicide activity upon treated plants were accumulation of carbohydrates and total free amino acids. The effects of the herbicides on these parameters were less pronounced in mutants compared to wild-type plants. The role of fermentation and AOX regarding pyruvate availability is also discussed.
  • PublicationOpen Access
    Protein kinase GCN2 mediates responses to glyphosate in Arabidopsis
    (BioMed Central, 2015) Faus, Isabel; Zabalza Aznárez, Ana; Santiago, Julia; Nebauer, Sergio G.; Royuela Hernando, Mercedes; Serrano, Ramón; Gadea, José; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Background: The increased selection pressure of the herbicide glyphosate has played a role in the evolution of glyphosate-resistance in weedy species, an issue that is becoming a threat to global agriculture. The molecular components involved in the cellular toxicity response to this herbicide at the expression level are still unidentified. Results: In this study, we identify the protein kinase GCN2 as a cellular component that fosters the action of glyphosate in the model plant Arabidopsis thaliana. Comparative studies using wild-type and gcn2 knock-out mutant seedlings show that the molecular programme that the plant deploys after the treatment with the herbicide, is compromised in gcn2. Moreover, gcn2 adult plants show a lower inhibition of photosynthesis, and both seedlings and adult gcn2 plants accumulate less shikimic acid than wild-type after treatment with glyphosate. Conclusions: These results points to an unknown GCN2-dependent factor involved in the cascade of events triggered by glyphosate in plants. Data suggest either that the herbicide does not equally reach the target-enzyme in a gcn2 background, or that a decreased flux in the shikimate pathway in a gcn2 plants minimize the impact of enzyme inhibition.
  • PublicationOpen Access
    Primary metabolism in an Amaranthus palmeri population with multiple resistance to glyphosate and pyrithiobac herbicides
    (Elsevier, 2022) Barco Antoñanzas, María; Gil Monreal, Miriam; Eceiza, Mikel Vicente; Royuela Hernando, Mercedes; Zabalza Aznárez, Ana; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA 2010
    The objective of this work was to characterize the resistance mechanisms and the primary metabolism of a multiple resistant (MR) population of Amaranthus palmeri to glyphosate and to the acetolactate synthase (ALS) inhibitor pyrithiobac. All MR plants analysed were glyphosate-resistant due to 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene amplification. Resistance to pyrithiobac was more variable among individuals and was related to point mutations at five positions in the ALS gene sequence: A122, A205, W574, S653 and G654. All MR plants were heterozygous for W574, the most abundant mutation. In nontreated plants, the presence of mutations did not affect ALS functionality, and plants with the W574L mutation showed the highest ALS resistance level to pyrithiobac. The accumulation of the transcripts corresponding to several genes of the aromatic amino acid (AAA) and branched-chain amino acid (BCAA) pathways detected in nontreated MR plants indicated additional effects of EPSPS gene amplification and ALS mutations. The physiological performance of the MR population after treatment with glyphosate and/or pyrithiobac was compared with that of a sensitive (S) population. The increase induced in total soluble sugars, AAA or BCAA content by both herbicides was higher in the S population than in the MR population. Physiological effects were not exacerbated after the mixture of both herbicides in S or in MR populations. This study provides new insights into the physiology of a multiple resistant A. palmeri, which could be very useful for achieving effective management of this weed.
  • PublicationOpen Access
    Effects of EPSPS Copy Number Variation (CNV) and glyphosate application on the aromatic and branched chain amino acid synthesis pathways in Amaranthus palmeri
    (Frontiers Media, 2017) Fernández Escalada, Manuel; Zulet González, Ainhoa; Gil Monreal, Miriam; Zabalza Aznárez, Ana; Ravet, Karl; Gaines, Todd; Royuela Hernando, Mercedes; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    A key enzyme of the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19), is the known target of the widely used herbicide glyphosate. Glyphosate resistance in Amaranthus palmeri, one of the most troublesome weeds in agriculture, has evolved through increased EPSPS gene copy number. The aim of this work was to study the pleiotropic effects of (i) EPSPS increased transcript abundance due to gene copy number variation (CNV) and of (ii) glyphosate application on the aromatic amino acid (AAA) and branched chain amino acid (BCAA) synthesis pathways. Hydroponically grown glyphosate sensitive (GS) and glyphosate resistant (GR) plants were treated with glyphosate 3 days after treatment. In absence of glyphosate treatment, high EPSPS gene copy number had only a subtle effect on transcriptional regulation of AAA and BCAA pathway genes. In contrast, glyphosate treatment provoked a general accumulation of the transcripts corresponding to genes of the AAA pathway leading to synthesis of chorismate in both GS and GR. After chorismate, anthranilate synthase transcript abundance was higher while chorismate mutase transcription showed a small decrease in GR and remained stable in GS, suggesting a regulatory branch point in the pathway that favors synthesis toward tryptophan over phenylalanine and tyrosine after glyphosate treatment. This was confirmed by studying enzyme activities in vitro and amino acid analysis. Importantly, this upregulation was glyphosate dose dependent and was observed similarly in both GS and GR populations. Glyphosate treatment also had a slight effect on the expression of BCAA genes but no general effect on the pathway could be observed. Taken together, our observations suggest that the high CNV of EPSPS in A. palmeri GR populations has no major pleiotropic effect on the expression of AAA biosynthetic genes, even in response to glyphosate treatment. This finding supports the idea that the fitness cost associated with EPSPS CNV in A. palmeri may be limited.
  • PublicationOpen Access
    ERF-VII transcription factors induce ethanol fermentation in response to amino acid biosynthesis-inhibiting herbicides
    (Oxford University Press, 2019) Gil Monreal, Miriam; Giuntoli, Beatrice; Zabalza Aznárez, Ana; Licausi, Francesco; Royuela Hernando, Mercedes; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Herbicides inhibiting either aromatic or branched-chain amino acid biosynthesis trigger similar physiological responses in plants, despite their different mechanism of action. Both types of herbicides are known to activate ethanol fermentation by inducing the expression of fermentative genes; however, the mechanism of such transcriptional regulation has not been investigated so far. In plants exposed to low-oxygen conditions, ethanol fermentation is transcriptionally controlled by the ethylene response factors-VII (ERF-VIIs), whose stability is controlled in an oxygen-dependent manner by the Cys-Arg branch of the N-degron pathway. In this study, we investigated the role of ERF-VIIs in the regulation of the ethanol fermentation pathway in herbicide-treated Arabidopsis plants grown under aerobic conditions. Our results demonstrate that these transcriptional regulators are stabilized in response to herbicide treatment and are required for ethanol fermentation in these conditions. We also observed that mutants with reduced fermentative potential exhibit higher sensitivity to herbicide treatments, thus revealing the existence of a mechanism that mimics oxygen deprivation to activate metabolic pathways that enhance herbicide tolerance. We speculate that this signaling pathway may represent a potential target in agriculture to affect tolerance to herbicides that inhibit amino acid biosynthesis.
  • PublicationOpen Access
    Increased glyphosate-induced gene expression in the shikimate pathway is abolished in the presence of aromatic amino acids and mimicked by shikimate
    (Frontiers Media, 2020) Zulet González, Ainhoa; Barco Antoñanzas, María; Gil Monreal, Miriam; Royuela Hernando, Mercedes; Zabalza Aznárez, Ana; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The herbicide glyphosate inhibits the plant enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in the aromatic amino acid (AAA) biosynthetic pathway, also known as the shikimate pathway. Amaranthus palmeri is a fast-growing weed, and several populations have evolved resistance to glyphosate through increased EPSPS gene copy number. The main objective of this study was to elucidate the regulation of the shikimate pathway and determine whether the regulatory mechanisms of glyphosate-sensitive and glyphosate-resistant plants were different. Leaf disks of sensitive and resistant (due to EPSPS gene amplification) A. palmeri plants were incubated for 24 h with glyphosate, AAA, glyphosate + AAA, or several intermediates of the pathway: shikimate, quinate, chorismate and anthranilate. In the sensitive population, glyphosate induced shikimate accumulation and induced the gene expression of the shikimate pathway. While AAA alone did not elicit any change, AAA applied with glyphosate abolished the effects of the herbicide on gene expression. It was not possible to fully mimic the effect of glyphosate by incubation with any of the intermediates, but shikimate was the intermediate that induced the highest increase (three-fold) in the expression level of the genes of the shikimate pathway of the sensitive population. These results suggest that, in this population, the lack of end products (AAA) of the shikimate pathway and shikimate accumulation would be the signals inducing gene expression in the AAA pathway after glyphosate application. In general, the effects on gene expression detected after the application of the intermediates were more severe in the sensitive population than in the resistant population. These results suggest that when EPSPS is overexpressed, as in the resistant population, the regulatory mechanisms of the AAA pathway are disrupted or buffered. The mechanisms underlying this behavior remain to be elucidated.
  • PublicationOpen Access
    Cysteine proteases are activated in sensitive Amaranthus palmeri populations upon treatment with herbicides inhibiting amino acid biosynthesis
    (Wiley, 2023) Barco Antoñanzas, María; Font Farre, María; Eceiza, Mikel Vicente; Gil Monreal, Miriam; Van der Hoorn, Reiner; Royuela Hernando, Mercedes; Zabalza Aznárez, Ana; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The herbicides glyphosate and pyrithiobac inhibit the enzyme 5-enolpyruvylshikimate3-phosphate synthase (EPSPS) in the aromatic amino acid biosynthetic pathway and acetolactate synthase (ALS) in the branched-chain amino acid biosynthetic pathway, respectively. Here we characterise the protease activity profiles of a sensitive (S), a glyphosate-resistant (GR) and a multiple-resistant (MR) population of Amaranthus palmeri in response to glyphosate and pyrithiobac. Amino acid accumulation and cysteine protease activities were induced with both herbicides in the S population and with pyrithiobac in the GR population, suggesting that the increase in cysteine proteases is responsible for the increased degradation of the available proteins and the observed increase in free amino acids. Herbicides did not induce any changes in the proteolytic activities in the populations with target-site resistance, indicating that this effect was only induced in sensitive plants.
  • PublicationOpen Access
    Impairment of carbon metabolism induced by the herbicide glyphosate
    (Elsevier, 2012) Orcaray Echeverría, Luis; Zulet González, Amaia; Zabalza Aznárez, Ana; Royuela Hernando, Mercedes; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    The herbicide glyphosate reduces plant growth and causes plant death by inhibiting the biosynthesis of aromatic amino acids. The objective of this work was to determine whether glyphosate-treated plants show a carbon metabolism pattern comparable to that of plants treated with herbicides that inhibit branched-chain amino acid biosynthesis. Glyphosate-treated plants showed impaired carbon metabolism with an accumulation of carbohydrates in the leaves and roots. The growth inhibition detected after glyphosate treatment suggested impaired metabolism that impedes the utilization of available carbohydrates or energy at the expected rate. These effects were common to both types of amino acid biosynthesis inhibitors. Under aerobic conditions, ethanolic fermentative metabolism was enhanced in the roots of glyphosate-treated plants. This fermentative response was not related to changes in the respiratory rate or to a limitation of the energy charge. This response, which was similar for both types of herbicides, might be considered a general response to stress conditions.
  • PublicationOpen Access
    Both foliar and residual applications of herbicides that inhibit amino acid biosynthesis induce alternative respiration and aerobic fermentation in pea roots
    (Wiley, 2016) Armendáriz García, Óscar; Gil Monreal, Miriam; Zulet González, Amaia; Zabalza Aznárez, Ana; Royuela Hernando, Mercedes; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The objective of this work was to ascertain whether there is a general pattern of carbon allocation and utilisation in plants following herbicide supply, independent of the site of application: sprayed on leaves or supplied to nutrient solution. The herbicides studied were the amino acid biosynthesis-inhibiting herbicides (ABIH): glyphosate, an inhibitor of aromatic amino acid biosynthesis, and imazamox, an inhibitor of branched-chain amino acid biosynthesis. All treated plants showed impaired carbon metabolism; carbohydrate accumulation was detected in both leaves and roots of the treated plants. The accumulation in roots was due to lack of use of available sugars as growth was arrested, which elicited soluble carbohydrate accumulation in the leaves due to a decrease in sink strength. Under aerobic conditions, ethanol fermentative metabolism was enhanced in roots of the treated plants. This fermentative response was not related to a change in total respiration rates or cytochrome respiratory capacity, but an increase in alternative oxidase capacity was detected. Pyruvate accumulation was detected after most of the herbicide treatments. These results demonstrate that both ABIH induce the less-efficient, ATP-producing pathways, namely fermentation and alternative respiration, by increasing the key metabolite, pyruvate. The plant response was similar not only for the two ABIH but also after foliar or residual application.