Belzunegui Otano, Tomás
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Belzunegui Otano
First Name
Tomás
person.page.departamento
Ciencias de la Salud
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
1 results
Search Results
Now showing 1 - 1 of 1
Publication Open Access An evolutionary underbagging approach to tackle the survival prediction of trauma patients: a case study at the Hospital of Navarre(IEEE, 2019) Sanz Delgado, José Antonio; Galar Idoate, Mikel; Bustince Sola, Humberto; Belzunegui Otano, Tomás; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Gobierno de Navarra / Nafarroako Gobernua, PI-019/11Survival prediction systems are used among emergency services at hospitals in order to measure their quality objectively. In order to do so, the estimated mortality rate given by a prediction model is compared with the real rate of the hospital. Hence, the accuracy of the prediction system is a key factor as more reliable estimations can be obtained. Survival prediction systems are aimed at scoring the severity of patients' injuries. Afterward, this score is used to estimate whether the patient will survive or not. Luckily, the number of patients who survive their injuries is greater than that of those who die. However, this degree of imbalance implies a greater difficulty in learning the prediction models. The aim of this paper is to develop a new prediction system for the Hospital of Navarre with the goal of improving the prediction capabilities of the currently used models since it would imply having a more reliable measurement of its quality. In order to do so, we propose a new strategy to conform an ensemble of classifiers using an evolutionary under sampling process in the bagging methodology. The experimental study is carried out over 462 patients who were treated at the Hospital of Navarre. Our new ensemble approach is an appropriate tool to deal with this problem as it is able to outperform the currently used models by the staff of the hospital as well as several state-of-the-art ensemble approaches designed for imbalanced domains.