Publication:
An evolutionary underbagging approach to tackle the survival prediction of trauma patients: a case study at the Hospital of Navarre

Date

2019

Director

Publisher

IEEE
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

ES/1PE/TIN2016-77356-P
MINECO//TIN2014-56381-REDT/ES/recolecta

Abstract

Survival prediction systems are used among emergency services at hospitals in order to measure their quality objectively. In order to do so, the estimated mortality rate given by a prediction model is compared with the real rate of the hospital. Hence, the accuracy of the prediction system is a key factor as more reliable estimations can be obtained. Survival prediction systems are aimed at scoring the severity of patients' injuries. Afterward, this score is used to estimate whether the patient will survive or not. Luckily, the number of patients who survive their injuries is greater than that of those who die. However, this degree of imbalance implies a greater difficulty in learning the prediction models. The aim of this paper is to develop a new prediction system for the Hospital of Navarre with the goal of improving the prediction capabilities of the currently used models since it would imply having a more reliable measurement of its quality. In order to do so, we propose a new strategy to conform an ensemble of classifiers using an evolutionary under sampling process in the bagging methodology. The experimental study is carried out over 462 patients who were treated at the Hospital of Navarre. Our new ensemble approach is an appropriate tool to deal with this problem as it is able to outperform the currently used models by the staff of the hospital as well as several state-of-the-art ensemble approaches designed for imbalanced domains.

Description

Keywords

Ensembles, Evolutionary algorithms, Imbalanced classification, Survival prediction, Trauma

Department

Estatistika, Informatika eta Matematika / Institute of Smart Cities - ISC / Estadística, Informática y Matemáticas

Faculty/School

Degree

Doctorate program

item.page.cita

J. A. Sanz, M. Galar, H. Bustince and T. Belzunegui, 'An Evolutionary UnderBagging Approach to Tackle the Survival Prediction of Trauma Patients: A Case Study at the Hospital of Navarre,' in IEEE Access, vol. 7, pp. 76009-76021, 2019.

item.page.rights

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.