Williams, Trevor

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Williams

First Name

Trevor

person.page.departamento

Producción Agraria

person.page.instituteName

ORCID

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 42
  • PublicationOpen Access
    Occlusion body pathogenicity, virulence and productivity traits vary with transmission strategy in a nucleopolyhedrovirus
    (Elservier, 2011-10-25) Cabodevilla de Andrés, Oihana; Ibáñez Elosua, Itxaso; Simón de Goñi, Oihane; Murillo Pérez, Rosa; Caballero Murillo, Primitivo; Williams, Trevor; Producción Agraria; Nekazaritza Ekoizpena; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    The prevalence of sublethal infections of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) was quantified in natural populations of S. exigua in Almería, Spain, during 2006 and 2007. Of 1045 adults collected, 167 (16.1%) proved positive for viral polyhedrin gene transcripts by RT-PCR. The prevalence of covert infection varied significantly according to sex and sample date. Of 1660 progeny of field-collected insects, lethal disease was observed in 10¿33% of offspring of transcript-positive females and 9¿49% of offspring of transcript-negative females. Isolates associated with vertically transmitted infections were characterized by restriction endonuclease analysis using BglII or EcoRV and compared with isolates originating from greenhouse soil-substrate believed to be horizontally transmitted. Insects from a sublethally infected Almerian colony were between 2.3-fold and 4.6-fold more susceptible to infection than healthy insects from a Swiss colony, depending on isolate. Horizontally transmitted isolates were significantly more pathogenic than vertically transmitted isolates in insects from both colonies. Mean speed of kill in second instars (Swiss colony) varied between isolates by >20 h, whereas mean occlusion body (OB) production in fourth instars (Swiss colony) varied by 3.8-fold among isolates. Intriguingly, all three horizontally transmitted isolates were very similar in speed of kill and OB production, whereas all three vertically transmitted isolates differed significantly from one another in both variables, and also differed significantly from the group of horizontally transmitted isolates in speed of kill (one isolate) or both variables (two isolates). We conclude that key pathogenicity and virulence traits of SeMNPV isolates vary according to their principal transmission strategy.
  • PublicationOpen Access
    Coocclusion of Helicoverpa armigera single nucleopolyhedrovirus (HearSNPV) and Helicoverpa armigera multiple nucleopolyhedrovirus (HearMNPV): pathogenicity and stability in homologous and heterologous hosts
    (MDPI, 2022) Arrizubieta Celaya, Maite; Simón de Goñi, Oihane; Ricarte Bermejo, Adriana; López Ferber, Miguel; Williams, Trevor; Caballero Murillo, Primitivo; Institute for Multidisciplinary Research in Applied Biology - IMAB; Gobierno de Navarra / Nafarroako Gobernua
    Helicoverpa armigera single nucleopolyhedrovirus (HearSNPV) is a virulent pathogen of lepidopterans in the genera Heliothis and Helicoverpa, whereas Helicoverpa armigera multiple nu-cleopolyhedrovirus (HearSNPV) is a different virus species with a broader host range. This study aimed to examine the consequences of coocclusion of HearSNPV and HearMNPV on the patho-genicity, stability and host range of mixed-virus occlusion bodies (OBs). HearSNPV OBs were approximately 6-fold more pathogenic than HearMNPV OBs, showed faster killing by approximately 13 h, and were approximately 45% more productive in terms of OB production per larva. For coocclusion, H. armigera larvae were first inoculated with HearMNPV OBs and subsequently inoculated with HearSNPV OBs at intervals of 0-72 h after the initial inoculation. When the interval between inoculations was 12-24 h, OBs collected from virus-killed insects were found to comprise 41¿57% of HearSNPV genomes, but the prevalence of HearSNPV genomes was greatly reduced (3- 4%) at later time points. Quantitative PCR (qPCR) analysis revealed the presence of HearSNPV genomes in a small fraction of multinucleocapsid ODVs representing 0.47¿0.88% of the genomes quan-tified in ODV samples, indicating that both viruses had replicated in coinfected host cells. End-point dilution assays on ODVs from cooccluded mixed-virus OBs confirmed the presence of both viruses in 41.9¿55.6% of wells that were predicted to have been infected by a single ODV. A control exper-iment indicated that this result was unlikely to be due to the adhesion of HearSNPV ODVs to HearMNPV ODVs or accidental contamination during ODV band extraction. Therefore, the dispar-ity between the qPCR and end-point dilution estimates of the prevalence of mixed-virus ODVs likely reflected virus-specific differences in replication efficiency in cell culture and the higher in-fectivity of pseudotyped ODVs that were produced in coinfected parental cells. Bioassays on H. armigera, Spodoptera frugiperda and Mamestra brassicae larvae revealed that mixed-virus OBs were capable of infecting heterologous hosts, but relative potency values largely reflected the proportion of HearMNPV present in each mixed-virus preparation. The cooccluded mixtures were unstable in serial passage; HearSNPV rapidly dominated during passage in H. armigera whereas HearMNPV rapidly dominated during passage in the heterologous hosts. We conclude that mixed-virus coocclusion technology may be useful for producing precise mixtures of viruses with host range properties suitable for the control of complexes of lepidopteran pests in particular crops, although this requires validation by field testing.
  • PublicationOpen Access
    Bacmid expression of granulovirus enhancin En3 accumulates in cell soluble fraction to potentiate nucleopolyhedrovirus infection
    (MDPI, 2021) Ricarte Bermejo, Adriana; Simón de Goñi, Oihane; Fernández González, Ana Beatriz; Williams, Trevor; Caballero Murillo, Primitivo; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Enhancins are metalloproteinases that facilitate baculovirus infection in the insect midgut. They are more prevalent in granuloviruses (GVs), constituting up to 5% of the proteins of viral occlusion bodies (OBs). In nucleopolyhedroviruses (NPVs), in contrast, they are present in the envelope of the occlusion-derived virions (ODV). In the present study, we constructed a recombinant Autographa californica NPV (AcMNPV) that expressed the Trichoplusia ni GV (TnGV) enhancin 3 (En3), with the aim of increasing the presence of enhancin in the OBs or ODVs. En3 was successfully produced but did not localize to the OBs or the ODVs and accumulated in the soluble fraction of infected cells. As a result, increased OB pathogenicity was observed when OBs were administered in mixtures with the soluble fraction of infected cells. The mixture of OBs and the soluble fraction of Sf9 cells infected with BacPhEn3 recombinant virus was ~3- and ~4.7-fold more pathogenic than BacPh control OBs in the second and fourth instars of Spodoptera exigua, respectively. In contrast, when purified, recombinant BacPhEn3 OBs were as pathogenic as control BacPh OBs. The expression of En3 in the soluble fraction of insect cells may find applications in the development of virus-based insecticides with increased efficacy.
  • PublicationOpen Access
    Iflavirus covert infection increases susceptibility to nucleopolyhedrovirus disease in Spodoptera exigua
    (MDPI, 2020) Carballo Palos, Arkaitz; Williams, Trevor; Murillo Pérez, Rosa; Caballero Murillo, Primitivo; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Agronomía, Biotecnología y Alimentación
    Naturally occurring covert infections in lepidopteran populations can involve multiple viruses with potentially different transmission strategies. In this study, we characterized covert infection by two RNA viruses, Spodoptera exigua iflavirus 1 (SeIV-1) and Spodoptera exigua iflavirus 2 (SeIV-2) (family Iflaviridae) that naturally infect populations of Spodoptera exigua, and examined their influence on susceptibility to patent disease by the nucleopolyhedrovirus Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) (family Baculoviridae). The abundance of SeIV-1 genomes increased up to ten-thousand-fold across insect developmental stages after surface contamination of host eggs with a mixture of SeIV-1 and SeIV-2 particles, whereas the abundance of SeIV-2 remained constant across all developmental stages. Low levels of SeIV-2 infection were detected in all groups of insects, including those that hatched from surface-decontaminated egg masses. SeIV-1 infection resulted in reduced larval weight gain, and an unbalanced sex ratio, whereas larval developmental time, pupal weight, and adult emergence and fecundity were not significantly affected in infected adults. The inoculation of S. exigua egg masses with iflavirus, followed by a subsequent infection with SeMNPV, resulted in an additive effect on larval mortality. The 50% lethal concentration (LC50) of SeMNPV was reduced nearly 4-fold and the mean time to death was faster by 12 h in iflavirus-treated insects. These results suggest that inapparent iflavirus infections may be able to modulate the host response to a new pathogen, a finding that has particular relevance to the use of SeMNPV as the basis for biological pest control products.
  • PublicationOpen Access
    Sequence comparison between three geographically distinct Spodoptera frugiperda multiple nucleopolyhedrovirus isolates: detecting positively selected genes
    (Elsevier, 2011-01-14) Simón de Goñi, Oihane; Palma Dovis, Leopoldo; Beperet Arive, Inés; Muñoz Labiano, Delia; López Ferber, Miguel; Caballero Murillo, Primitivo; Williams, Trevor; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    The complete genomic sequence of a Nicaraguan plaque purified Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV) genotype SfMNPV-B was determined and compared to previously sequenced isolates from United States (SfMNPV-3AP2) and Brazil (SfMNPV-19). The genome of SfMNPV-B (132,954 bp) was 1623 bp and 389 bp larger than that of SfMNPV-3AP2 and SfMNPV-19, respectively. Genome size differences were mainly due to a deletion located in the SfMNPV-3AP2 egt region and small deletions and point mutations in SfMNPV-19. Nucleotide sequences were strongly conserved (99.35% identity) and a high degree of predicted amino acid sequence identity was observed. A total of 145 open reading frames (ORFs) were identified in SfMNPV-B, two of them (sf39a and sf110a) had not been previously identified in the SfMNPV-3AP2 and SfMNPV-19 genomes and one (sf57a) was absent in both these genomes. In addition, sf6 was not previously identified in the SfMNPV-19 genome. In contrast, SfMNPV-B and SfMNPV-19 both lacked sf129 that had been reported in SfMNPV-3AP2. In an effort to identify genes potentially involved in virulence or in determining population adaptations, selection pressure analysis was performed. Three ORFs were identified undergoing positive selection: sf49 (pif-3), sf57 (odv-e66b) and sf122 (unknown function). Strong selection for ODV envelope protein genes indicates that the initial infection process in the insect midgut is one critical point at which adaptation acts during the transmission of these viruses in geographically distant populations. The function of ORF sf122 is being examined.
  • PublicationOpen Access
    Chrysodeixis chalcites, a pest of banana crops on the Canary Islands: incidence, economic losses and current control measures
    (Elsevier, 2018-03-05) Fuentes Barrera, Ernesto Gabriel; Hernández Suárez, Estrella; Simón de Goñi, Oihane; Williams, Trevor; Caballero Murillo, Primitivo; Producción Agraria; Nekazaritza Ekoizpena; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Chrysodeixis chalcites is an emergent pest in bananas (Musa acuminata Colla) grown on the Canary Islands. Feeding damage to leaves and fruit and the control measures targeted at this pest were evaluated over a two-year period (2013–2014). The prevalence of infestations (42–100%) on the islands was similar during the two years of the study. Mean foliar damage (1.5–7.3% depending on island) and fruit damage (1.0–5.7%) detected in field surveys varied significantly across islands, plantation aspect (north- or south-facing) and season. Fruit damage was not correlated with foliar damage (P > 0.05). The weight of C. chalcites damaged bananas varied significantly (0.2–4.2% of harvested fruit) across islands, particularly in the spring. Overall, 3155 tonnes of bananas/yr are likely discarded due to C. chalcites damage, representing 1.5% of annual production or 2.68 million €/yr. The most frequently used pesticide was indoxacarb, usually applied on three occasions per crop cycle, for which the cost of control measures would average 240 €/ha per crop cycle. The direct damage that C. chalcites causes to banana fruit results in significant economic losses in addition to the direct costs of pesticide based control measures. Effective and sustainable control strategies are required against this pest.
  • PublicationOpen Access
    Genetic variation and biological activity of two closely related alphabaculoviruses during serial passage in permissive and semi-permissive heterologous hosts
    (MDPI, 2019) Belda García, Isabel María; Beperet Arive, Inés; Williams, Trevor; Caballero Murillo, Primitivo; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Phylogenetic analyses suggest that Mamestra brassicae multiple nucleopolyhedrovirus (MbMNPV) and Helicoverpa armigera multiple nucleopolyhedrovirus (HearMNPV) may be strains of the same virus species. Most of the studies comparing their biological activities have been performed in their homologous hosts. A comparison of host range and stability in alternative hosts was performed. The host range of these viruses was compared using high concentrations of inoculum to inoculate second instars of six species of Lepidoptera. One semi-permissive host (Spodoptera littoralis) and one permissive host (S. exigua) were then selected and used to perform six serial passages involving a concentration corresponding to the ~25% lethal concentration for both viruses. Restriction endonuclease analysis showed fragment length polymorphisms in every hostvirus system studied. In S. littoralis, serial passage of MbMNPV resulted in decreased pathogenicity and an increase in speed-of-kill, whereas no significant changes were detected for HearMNPV with respect to the initial inoculum. In contrast, both viruses showed a similar trend in S. exigua. These results highlight the low genetic diversity and a high phenotypic stability of HearMNPV with respect to the original inoculum after six successive passages in both insect hosts. This study concludes that host-baculovirus interactions during serial passage are complex and the process of adaptation to a novel semi-permissive host is far from predictable.
  • PublicationOpen Access
    Selection of a nucleopolyhedrovirus isolate from Helicoverpa armigera as the basis for a biological insecticide
    (Wiley, 2014-05-01) Arrizubieta Celaya, Maite; Williams, Trevor; Caballero Murillo, Primitivo; Simón de Goñi, Oihane; Producción Agraria; Nekazaritza Ekoizpena; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua
    Background: the cotton bollworm, Helicoverpa armigera, is an insect that causes damage in a wide range of crops in Spain.Seven isolates of H. armigera single nucleopolyhedrovirus (HearSNPV) from the Iberian Peninsula were subjected to molecularand biological characterization and compared with a Chinese genotype (HearSNPV-G4). Results: the estimated sizes of the Iberian genomes varied between 116.2 and 132.4 kb, compared to 131.4 kb of theHearSNPV-G4 reference genome. Phylogenetic analysis based on the lef-8, lef-9 and polh genes revealed that the Iberianstrains were more closely related to one another than to other HearSNPV isolates. Occlusion body (OB) concentration-mortalityresponses (LC 50 values) did not differ significantly among Iberian isolates when tested against a Helicoverpa armigera colonyfrom Oxford (UK). Despite being the fastest killing isolate, HearSNPV-SP1 was as productive as isolates with lower virulence,with an average yield of 3.1 × 109 OBs larva−1 . OBs of HearSNPV-SP1 and HearSNPV-G4 were similarly pathogenic against arecently established colony from southern Spain, although HearSNPV-SP1 was faster killing than HearSNPV-G4 against a rangeof instars. Conclusion: the insecticidal properties of HearSNPV-SP1 mean that this strain is likely to prove useful as the basis for abiological insecticide for control of Helicoverpa armigera in Spain.
  • PublicationOpen Access
    Genomic sequences of five Helicoverpa armigera nucleopolyhedrovirus genotypes from Spain that differ in their insecticidal properties
    (American Society for Microbiology, 2015) Arrizubieta Celaya, Maite; Simón de Goñi, Oihane; Williams, Trevor; Caballero Murillo, Primitivo; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Helicoverpa armigera nucleopolyhedrovirus (HearNPV) has proved effective as the basis for various biological insecticides. Complete genome sequences of five Spanish HearNPV genotypes differed principally in the homologous regions (hrs) and the baculovirus repeat open reading frame (bro) genes, suggesting that they may be involved in the phenotypic differences observed among genotypes.
  • PublicationOpen Access
    Nucleopolyhedrovirus coocclusion technology: a new concept in the development of biological insecticides
    (Frontiers Media, 2022) Williams, Trevor; López Ferber, Miguel; Caballero Murillo, Primitivo; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Nucleopolyhedroviruses (NPV, Baculoviridae) that infect lepidopteran pests have an established record as safe and effective biological insecticides. Here, we describe a new approach for the development of NPV-based insecticides. This technology takes advantage of the unique way in which these viruses are transmitted as collective infectious units, and the genotypic diversity present in natural virus populations. A ten-step procedure is described involving genotypic variant selection, mixing, coinfection and intraspecific coocclusion of variants within viral occlusion bodies. Using two examples, we demonstrate how this approach can be used to produce highly pathogenic virus preparations for pest control. As restricted host range limits the uptake of NPV-based insecticides, this technology has recently been adapted to produce custom-designed interspecific mixtures of viruses that can be applied to control complexes of lepidopteran pests on particular crops, as long as a shared host species is available for virus production. This approach to the development of NPV-based insecticides has the potential to be applied across a broad range of NPV-pest pathosystems.