Occlusion body pathogenicity, virulence and productivity traits vary with transmission strategy in a nucleopolyhedrovirus
Date
Director
Publisher
Impacto
Abstract
The prevalence of sublethal infections of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) was quantified in natural populations of S. exigua in Almería, Spain, during 2006 and 2007. Of 1045 adults collected, 167 (16.1%) proved positive for viral polyhedrin gene transcripts by RT-PCR. The prevalence of covert infection varied significantly according to sex and sample date. Of 1660 progeny of field-collected insects, lethal disease was observed in 10¿33% of offspring of transcript-positive females and 9¿49% of offspring of transcript-negative females. Isolates associated with vertically transmitted infections were characterized by restriction endonuclease analysis using BglII or EcoRV and compared with isolates originating from greenhouse soil-substrate believed to be horizontally transmitted. Insects from a sublethally infected Almerian colony were between 2.3-fold and 4.6-fold more susceptible to infection than healthy insects from a Swiss colony, depending on isolate. Horizontally transmitted isolates were significantly more pathogenic than vertically transmitted isolates in insects from both colonies. Mean speed of kill in second instars (Swiss colony) varied between isolates by >20 h, whereas mean occlusion body (OB) production in fourth instars (Swiss colony) varied by 3.8-fold among isolates. Intriguingly, all three horizontally transmitted isolates were very similar in speed of kill and OB production, whereas all three vertically transmitted isolates differed significantly from one another in both variables, and also differed significantly from the group of horizontally transmitted isolates in speed of kill (one isolate) or both variables (two isolates). We conclude that key pathogenicity and virulence traits of SeMNPV isolates vary according to their principal transmission strategy.
Description
Keywords
Department
Faculty/School
Degree
Doctorate program
item.page.cita
item.page.rights
© 2010 Elsevier Inc.
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.