Person: Iglesias Rey, Sara
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Iglesias Rey
First Name
Sara
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ORCID
0000-0002-7874-4443
person.page.upna
811936
Name
4 results
Search Results
Now showing 1 - 4 of 4
Publication Open Access Visualización de imágenes multi-e hiperespectrales usando operadores de agregación(2018) Iglesias Rey, Sara; López Molina, Carlos; Escuela Técnica Superior de Ingenieros Agrónomos; Nekazaritza Ingeniarien Goi Mailako Eskola TeknikoaEl crecimiento de las imágenes multi- e hiperespectrales ha sido claro en los últimos años, y nada hace pensar que su uso decaerá a corto plazo. Sin embargo, sufre un problema debido a la alta dimensionalidad de la información almacenada en cada píxel: los problemas para su visualización en monitores estándar (tri-estímulo). Por ello, en el presente trabajo se ha propuesto un método de fusión de los datos mediante operadores de agregación, empleando para ello los operadores OWA (Ordered Weighted Averaging) para obtener una representación inicial de la información. El comportamiento del proceso propuesto se evaluó y comparó con el método clásico de fusión de la información. En particular, se han estudiado distintos vectores de pesos wi, mostrando la gran influencia que estos tienen sobre la visualización. Finalmente, se realizó una aplicación de los operadores de agregación escogidos a una serie de casos prácticos de conjuntos de datos de imágenes multi- e hiperespectrales obtenidos de las Universidad de País Vasco. Se ha comprobado la utilidad y mejora de este método de visualización, respecto a otras propuestas anteriores, cumpliendo los objetivos de diseño propuestos presentados a lo largo de este estudio.Publication Open Access Ultrametrics for context-aware comparison of binary images(Elsevier, 2024) López Molina, Carlos; Iglesias Rey, Sara; Baets, Bernard de; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaQuantitative image comparison has been a key topic in the image processing literature for the past 30 years. The reasons for it are diverse, and so is the range of applications in which measures of comparison are needed. Examples of image processing tasks requiring such measures are the evaluation of algorithmic results (through the comparison of computer-generated results to given ground truth) or the selection of loss/goal functions in a machine learning context. Measures of comparison in literature take different inspirations, and are often tailored to specific needs. Nevertheless, even if some measures of comparison intend to replicate how humans evaluate the similarity of two images, they normally overlook a fundamental characteristic of the way humans perform such evaluation: the context of comparison. In this paper, we present a measure of comparison for binary images that incorporates a sense of context. More specifically, we present a Methodology for the generation of ultrametrics for context-aware comparison of binary images. We test our proposal in the context of boundary image comparison on the BSDS500 benchmark.Publication Open Access On the role of distance transformations in Baddeley's Delta Metric(Elsevier, 2021) López Molina, Carlos; Iglesias Rey, Sara; Bustince Sola, Humberto; Baets, Bernard de; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaComparison and similarity measurement have been a key topic in computer vision for a long time. There is, indeed, an extensive list of algorithms and measures for image or subimage comparison. The superiority or inferiority of different measures is hard to scrutinize, especially considering the dimensionality of their parameter space and their many different configurations. In this work, we focus on the comparison of binary images, and study different variations of Baddeley's Delta Metric, a popular metric for such images. We study the possible parameterizations of the metric, stressing the numerical and behavioural impact of different settings. Specifically, we consider the parameter settings proposed by the original author, as well as the substitution of distance transformations by regularized distance transformations, as recently presented by Brunet and Sills. We take a qualitative perspective on the effects of the settings, and also perform quantitative experiments on separability of datasets for boundary evaluation.Publication Open Access Distance transformations based on ordered weighted averaging operators(University of Hawaii Press, 2021) López Molina, Carlos; Miguel Turullols, Laura de; Iglesias Rey, Sara; Bustince Sola, Humberto; Baets, Bernard de; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaBinary image comparison has been a study subject for a long time, often rendering in context-specific solutions that depend upon the type of visual contents in the binary images. Distance transformations have been a recurrent tool in many of such solutions. The literature contains works on the generation and definition of distance transformations, but also on how to make a sensible use of their results. In this work, we attempt to solve one of the most critical problems in the application of distance transformations to real problems: their oversensitivity to certain spurious pixels which, even if having a minimal visual impact in the binary images to be compared, may have a severe impact on their distance transforms. With this aim, we combine distance transformations with Ordered Weighted Averaging (OWA) operators, a well-known information fusion tool from Fuzzy Set Theory.