González de Audícana Amenábar, María

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

González de Audícana Amenábar

First Name

María

person.page.departamento

Ingeniería

person.page.instituteName

IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Evaluación multitemporal de métodos de corrección topográfica mediante el uso de imágenes sintéticas multiespectrales
    (Asociación Española de Teledetección, 2014) Sola Torralba, Ion; Álvarez-Mozos, Jesús; González de Audícana Amenábar, María; Torres Escribano, José Luis; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak
    En este trabajo se presentan los resultados de la evaluación multitemporal de varios métodos de corrección topográfica (TOC), cuya bondad se determina de forma cuantitativa mediante el uso de imágenes sintéticas multiespectrales simuladas para diferentes fechas de adquisición a lo largo del año. Para cada fecha se generan dos imágenes sintéticas, una considerando el relieve real (imagen SR), y otra el relieve horizontal (imagen SH). Las imágenes SR se corrigen utilizando distintos TOC y estas imágenes corregidas se comparan con la corrección ideal (imagen SH) mediante el índice de similitud estructural (SSIM). Los valores de SSIM nos permiten evaluar la eficacia de cada corrección para distintas fechas, es decir, para distintos ángulos de elevación solar.
  • PublicationOpen Access
    Multitemporal evaluation of topographic correction algorithms using synthetic images
    (SPIE, 2012) Sola Torralba, Ion; Álvarez-Mozos, Jesús; González de Audícana Amenábar, María; Torres Escribano, José Luis; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak
    Land cover classification and quantitative analysis of multispectral data in mountainous regions is considerably hampered by the influence of topography on the spectral response pattern. In the last years, different topographic correction (TOC) algorithms have been proposed to correct illumination differences between sunny and shaded areas observed by optical remote sensors. Although the available number of TOC methods is high, the evaluation of their performance usually relies on the existence of precise land cover information, and a standardised and objective evaluation procedure has not been proposed yet. Besides, previous TOC assessment studies only considered a limited set of illumination conditions, normally assuming favourable illumination conditions. This paper presents a multitemporal evaluation of TOC methods based on synthetically generated images in order to evaluate the influence of solar angles on the performance of TOC methods. These synthetic images represent the radiance an optical sensor would receive under specific geometric and temporal acquisition conditions and assuming a certain land-cover type. A method for creating synthetic images using state-of-the-art irradiance models has been tested for different periods of the year, which entails a variety of solar angles. Considering the real topography of a specific area a Synthetic Real image (SR) is obtained, and considering the relief of this area as being completely flat a Synthetic Horizontal image (SH) is obtained. The comparison between corrected image obtained applying a TOC method to SR image and SH image of the same area, i.e. considered the ideal correction, allows assessing the performance of each TOC algorithm.