González de Audícana Amenábar, María
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
González de Audícana Amenábar
First Name
María
person.page.departamento
Ingeniería
person.page.instituteName
IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
18 results
Search Results
Now showing 1 - 10 of 18
Publication Open Access Influence of surface roughness spatial variability and temporal dynamics on the retrieval of soil moisture from SAR observations(MDPI, 2009) Álvarez-Mozos, Jesús; Verhoest, Niko E. C.; Larrañaga Urien, Arantzazu; Casalí Sarasíbar, Javier; González de Audícana Amenábar, María; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta ProiektuakRadar-based surface soil moisture retrieval has been subject of intense research during the last decades. However, several difficulties hamper the operational estimation of soil moisture based on currently available spaceborne sensors. The main difficulty experienced so far results from the strong influence of other surface characteristics, mainly roughness, on the backscattering coefficient, which hinders the soil moisture inversion. This is especially true for single configuration observations where the solution to the surface backscattering problem is ill-posed. Over agricultural areas cultivated with winter cereal crops, roughness can be assumed to remain constant along the growing cycle allowing the use of simplified approaches that facilitate the estimation of the moisture content of soils. However, the field scale spatial variability and temporal variations of roughness can introduce errors in the estimation of soil moisture that are difficult to evaluate. The objective of this study is to assess the impact of roughness spatial variability and roughness temporal variations on the retrieval of soil moisture from radar observations. A series of laser profilometer measurements were performed over several fields in an experimental watershed from September 2004 to March 2005. The influence of the observed roughness variability and its temporal variations on the retrieval of soil moisture is studied using simulations performed with the Integral Equation Model, considering different sensor configurations. Results show that both field scale roughness spatial variability and its temporal variations are aspects that need to be taken into account, since they can introduce large errors on the retrieved soil moisture values.Publication Open Access Analysis of fire services coverage in Spain(DYNA, 2018) Echeverría Iriarte, Francisco Javier; González de Audícana Amenábar, María; López Maestresalas, Ainara; Arazuri Garín, Silvia; Ciriza Labiano, Raquel; Jarén Ceballos, Carmen; Ingeniería; Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaPrevious analysis of the locations of fire stations in Spain and the extent of the areas they cover revealed significant deficiencies with regard to the proportion of communities who would not receive fire service intervention within a reasonable time period. This article discusses and describes the use of Geographic Information Systems and related tools to determine the areas and population covered by existing fire services within a specific response time. This response time by road, is based on a survey of fire service interventions in other European countries. The analysis compares data from a statistical study with georeferenced ones and demonstrates that the areas and communities not covered within this response time is greater than previously believed. The article then describes an analysis an alternative solution to reinforce the current fire stations network with part-time firefighters to cover the areas not covered mainly in rural and remote locations.Publication Open Access Multi-criteria evaluation of topographic correction methods(Elsevier, 2016) Sola Torralba, Ion; González de Audícana Amenábar, María; Álvarez-Mozos, Jesús; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta ProiektuakIn the last decades, several topographic correction methods (TOC) have been proposed, but there is not an agreement on the best method. Furthermore, different evaluation criteria have been used in the past, and there is not any simple and objective evaluation procedure to measure the quality of the correction. Consequently, a multicriteria analysis of widely used topographic correction methods is required that evaluates their performance over different sensors, terrain and temporal configurations. In this work, ten TOC methods were assessed using seven different evaluation strategies. The analysis was carried out for three SPOT5 images acquired over a mountainous area of northern Spain. The images had different acquisition dates and solar angles, so as to evaluate performance under varying illumination conditions. The results obtained showed that Statistic-Empiricalmethod, CCorrection and Sun-Canopy-Sensor+C performed the best, and differences were minor when favorable illumination conditions were considered. For the seven tested evaluation strategies, interquartile range reduction of land covers or the comparison of sunlit and shaded slopes gave very similar results, whereas there were greater contrasts among other criteria.Publication Open Access Assessment of atmospheric correction methods for Sentinel-2 images in Mediterranean landscapes(Elsevier, 2018) Sola Torralba, Ion; García-Martín, Alberto; Sandonís Pozo, Leire; Álvarez-Mozos, Jesús; González de Audícana Amenábar, María; Ingeniería; IngeniaritzaAtmospheric correction of optical satellite imagery is an essential pre-processing for modelling biophysical variables, multi-temporal analysis, and digital classification processes. Sentinel-2 products available for users are distributed by the European Space Agency (ESA) as Top Of Atmosphere reflectance values in cartographic geometry (Level-1C product). In order to obtain Bottom Of Atmosphere reflectance images (Level-2A product) derived from this Level-1C products, ESA provides the SEN2COR module, which is implemented in the Sentinel Application Platform. Alternatively, ESA recently distributes Level-2A products processed by SEN2COR with a default configuration. On the other hand, the conversion from Level-1C to Level-2A product can be generated using alternative atmospheric correction methods, such as MAJA, 6S, or iCOR. In this context, this paper aims to evaluate the quality of Level-2A products obtained through different methods in Mediterranean shrub and grasslands by comparing data obtained from Sentinel-2 imagery with field spectrometry data. For that purpose, six plots with different land covers (asphalt, grass, shrub, pasture, and bare soil) were analyzed, by using synchronous imagery to fieldwork (from July to September 2016). The results suggest the suitability of the applied atmospheric corrections, with coefficients of determination higher than 0.90 and root mean square error lower than 0.04 achieving a relative error in bottom of atmosphere reflectance of only 2–3%. Nevertheless, minor differences were observed between the four tested methods, with slightly varying results depending on the spectral band and land cover.Publication Open Access Automatic detection of uprooted orchards based on orthophoto texture analysis(MDPI, 2017) Ciriza Labiano, Raquel; Sola Torralba, Ion; Albizua, Lourdes; Álvarez-Mozos, Jesús; González de Audícana Amenábar, María; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta ProiektuakPermanent crops, such as olive groves, vineyards and fruit trees, are important in European agriculture because of their spatial and economic relevance. Agricultural geographical databases (AGDBs) are commonly used by public bodies to gain knowledge of the extension covered by these crops and to manage related agricultural subsidies and inspections. However, the updating of these databases is mostly based on photointerpretation, and thus keeping this information up-to-date is very costly in terms of time and money. This paper describes a methodology for automatic detection of uprooted orchards (parcels where fruit trees have been eliminated) based on the textural classification of orthophotos with a spatial resolution of 0.25 m. The textural features used for this classification were derived from the grey level co-occurrence matrix (GLCM) and wavelet transform, and were selected through principal components (PCA) and separability analyses. Next, a Discriminant Analysis classification algorithm was used to detect uprooted orchards. Entropy, contrast and correlation were found to be the most informative textural features obtained from the co-occurrence matrix. The minimum and standard deviation in plane 3 were the selected features based on wavelet transform. The classification based on these features achieved a true positive rate (TPR) of over 80% and an accuracy (A) of over 88%. As a result, this methodology enabled reducing the number of fields to photointerpret by 60–85%, depending on the membership threshold value selected. The proposed approach could be easily adopted by different stakeholders and could increase significantly the efficiency of agricultural database updating tasks.Publication Open Access Monitoring rainfed alfalfa growth in semiarid agrosystems using Sentinel-2 imagery(MDPI, 2021) Echeverría Obanos, Andrés; Urmeneta, Alejandro; González de Audícana Amenábar, María; González de Andrés, Ester; Zientziak; Ingeniaritza; Institute for Multidisciplinary Research in Applied Biology - IMAB; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ciencias; Ingeniería; Gobierno de Navarra / Nafarroako GobernuaThe aim of this study was to assess the utility of Sentinel-2 images in the monitoring of the fractional vegetation cover (FVC) of rainfed alfalfa in semiarid areas such as that of Bardenas Reales in Spain. FVC was sampled in situ using 1 m2 surfaces at 172 points inside 18 alfalfa fields from late spring to early summer in 2017 and 2018. Different vegetation indices derived from a series of Sentinel-2 images were calculated and were then correlated with the FVC measurements at the pixel and parcel levels using different types of equations. The results indicate that the normalized difference vegetation index (NDVI) and FVC were highly correlated at the parcel level (R 2 = 0.712), where as the correlation at the pixel level remained moderate across each of the years studied. Based on the findings, another 29 alfalfa plots (28 rainfed; 1 irrigated) were remotely monitored operationally for 3 years (2017–2019), revealing that location and weather conditions were strong determinants of alfalfa growth in Bardenas Reales. The results of this study indicate that Sentinel-2 imagery is a suitable tool for monitoring rainfed alfalfa pastures in semiarid areas, thus increasing the potential success of pasture management.Publication Open Access Multitemporal evaluation of topographic correction algorithms using synthetic images(SPIE, 2012) Sola Torralba, Ion; Álvarez-Mozos, Jesús; González de Audícana Amenábar, María; Torres Escribano, José Luis; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta ProiektuakLand cover classification and quantitative analysis of multispectral data in mountainous regions is considerably hampered by the influence of topography on the spectral response pattern. In the last years, different topographic correction (TOC) algorithms have been proposed to correct illumination differences between sunny and shaded areas observed by optical remote sensors. Although the available number of TOC methods is high, the evaluation of their performance usually relies on the existence of precise land cover information, and a standardised and objective evaluation procedure has not been proposed yet. Besides, previous TOC assessment studies only considered a limited set of illumination conditions, normally assuming favourable illumination conditions. This paper presents a multitemporal evaluation of TOC methods based on synthetically generated images in order to evaluate the influence of solar angles on the performance of TOC methods. These synthetic images represent the radiance an optical sensor would receive under specific geometric and temporal acquisition conditions and assuming a certain land-cover type. A method for creating synthetic images using state-of-the-art irradiance models has been tested for different periods of the year, which entails a variety of solar angles. Considering the real topography of a specific area a Synthetic Real image (SR) is obtained, and considering the relief of this area as being completely flat a Synthetic Horizontal image (SH) is obtained. The comparison between corrected image obtained applying a TOC method to SR image and SH image of the same area, i.e. considered the ideal correction, allows assessing the performance of each TOC algorithm.Publication Open Access Inter-comparison of atmospheric correction methods on Sentinel-2 images applied to croplands(IEEE, 2018) Sola Torralba, Ion; Álvarez-Mozos, Jesús; González de Audícana Amenábar, María; Ingeniería; IngeniaritzaAtmospheric correction of high resolution satellite scenery is a necessary preprocessing step for applications where bottom of atmosphere (BOA) reflectances are needed. The selection of the best atmospheric correction method to use on images acquired from new platforms, such as Sentinel-2, is essential to provide accurate BOA reflectances. In this work the performance of three atmospheric correction methods (6S, MAJA and SEN2COR) applied to Sentinel-2 scenes are compared by evaluating the resultant spectral signatures of six crop types on two specific dates, and their NDVI time series along a complete year. Although SEN2COR introduced greater corrections, especially in the infrared bands, the results suggest a varying performance of the methods depending on the land cover and the atmospheric conditions. Further research, particularly incorporating ground truth data, is recommended to rigorously validate the different atmospheric methods.Publication Open Access Synthetic images for evaluating topographic correction algorithm(IEEE, 2013) Sola Torralba, Ion; González de Audícana Amenábar, María; Álvarez-Mozos, Jesús; Torres Escribano, José Luis; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak; Gobierno de Navarra / Nafarroako GobernuaIn the last years, many topographic correction (TOC) methods have been proposed to correct the illumination differences between the areas observed by optical remote sensors. Although the available number of TOC methods is high, the evaluation of their performance generally relies on the existence of precise land-cover information, and a standardized and objective evaluation procedure has not been proposed yet. In this paper, we propose an objective procedure to assess the accuracy of these TOC methods on the basis of simulated scenes, i.e., synthetically generated images. These images represent the radiance an optical sensor would receive under specific geometric and temporal acquisition conditions and assuming a certain land-cover type. A simplified method for creating synthetic images using the stateof- the-art irradiance models is proposed, both considering the real topography of a certain area [synthetic real (SR) image] or considering the relief of this area as being completely flat [synthetic horizontal image (SH)]. The comparison between the corrected image obtained by applying a TOC method to the SR and SH images of the same area, allows assessing the performance of each TOC algorithm. This comparison is quantitatively carried out using the structural similarity index. The proposed TOC evaluation procedure is applied to a specific case study in northern Spain to explain its implementation and demonstrate its potential. The procedure proposed in this paper could be also used to assess the behavior of TOC methods operating under different scenarios considering diverse topographic, geometrical, and temporal acquisition configurations.Publication Open Access Evaluación multitemporal de métodos de corrección topográfica mediante el uso de imágenes sintéticas multiespectrales(Asociación Española de Teledetección, 2014) Sola Torralba, Ion; Álvarez-Mozos, Jesús; González de Audícana Amenábar, María; Torres Escribano, José Luis; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta ProiektuakEn este trabajo se presentan los resultados de la evaluación multitemporal de varios métodos de corrección topográfica (TOC), cuya bondad se determina de forma cuantitativa mediante el uso de imágenes sintéticas multiespectrales simuladas para diferentes fechas de adquisición a lo largo del año. Para cada fecha se generan dos imágenes sintéticas, una considerando el relieve real (imagen SR), y otra el relieve horizontal (imagen SH). Las imágenes SR se corrigen utilizando distintos TOC y estas imágenes corregidas se comparan con la corrección ideal (imagen SH) mediante el índice de similitud estructural (SSIM). Los valores de SSIM nos permiten evaluar la eficacia de cada corrección para distintas fechas, es decir, para distintos ángulos de elevación solar.