González de Audícana Amenábar, María
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
González de Audícana Amenábar
First Name
María
person.page.departamento
Ingeniería
person.page.instituteName
IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
5 results
Search Results
Now showing 1 - 5 of 5
Publication Open Access Identifying forest harvesting practices: clear-cutting and thinning in diverse tree species using dense Landsat time series(Elsevier, 2025-02-15) Giambelluca, Ana Laura; Hermosilla, Txomin; Álvarez-Mozos, Jesús; González de Audícana Amenábar, María; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Gobierno de Navarra / Nafarroako GobernuaForest monitoring plays a critical role in achieving sustainable forest management practices. The ability to identify ongoing harvesting activities is crucial for developing targeted strategies to maintain forest health. Traditional monitoring methods, which rely on field inventories, are often expensive and time-consuming. Remote sensing offers an interesting alternative, leveraging dense time series of satellite imagery and various algorithms for disturbance detection. This study presents and assesses a novel methodology for identifying forest harvesting practices (clear-cutting and thinning) using Continuous Change Detection and Classification (CCDC) algorithm, available in Google Earth Engine. The methodology comprises two steps. In the first step, performed at the pixel level, the CCDC algorithm was used to detect changes in the vegetation cover by considering Landsat 8 spectral bands, vegetation indices, and different combinations thereof. In the second step, two optimal thresholds were determined to identify forest harvesting practices based on the proportion of pixels flagged as change. This study was conducted in forest stands consisting of different conifer and broadleaf species. Accuracy was assessed using an independent set of photo-interpreted samples. The results indicated that the short-wave infrared 2 was the best individual band for forest harvesting practices identification, with an average F-score of 0.77 ± 0.06, overperforming vegetation indices. The combination of all spectral bands was the most effective to identify both clear-cuts and thinning (F-score = 0.85 ± 0.05). This combination was used to evaluate the accuracy of this approach for identifying harvesting practices over different tree species. Poplar (Populus sp.) had the highest identification rate (F-score = 0.99 ± 0.02), while black pine (Pinus nigra J.F. Arnold) stands had the lowest F-score (0.74 ± 0.05). These results highlight the ability to accurately identify forest harvesting practices even in heterogeneous forests with a high diversity of tree species using dense time series of Landsat imagery.Publication Open Access Evaluation of R tools for downloading MODIS images and their use in urban growth analysis of the city of Tarija (Bolivia)(MDPI, 2022) Campero Taboada, Milton J.; Luquin Oroz, Eduardo Adrián; Montesino San Martín, Manuel; González de Audícana Amenábar, María; Campo-Bescós, Miguel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe aim of this study was to compare the available tools in R for downloading and processing Moderate Resolution Imaging Spectroradiometer (MODIS) data, specifically the Enhanced Vegetation Index (EVI) product. The R tools evaluated were the MODIS package, RGISTools, MODISTools, R Google Earth Engine (RGEE) package, MODIStsp, and the Application for Extracting and Exploring Analysis Ready Samples (AppEEARS) application. Each tool was used to download the same product (EVI) corresponding to the same day (3 December 2015), and downloaded data were used to analyze the urban growth of Tarija (Bolivia) as an interesting application. The following features were analyzed: download time and memory used during the download, additional postprocessing time, local memory occupied on the computer, and downloaded file formats. Results showed that the most efficient R tools were those that work directly in the “cloud” or use text queries (RGEE and AppEEARS, respectively) and provide, as a final product, a cropped.tif image according to the area of interest.Publication Open Access Monitoring rainfed alfalfa growth in semiarid agrosystems using Sentinel-2 imagery(MDPI, 2021) Echeverría Obanos, Andrés; Urmeneta, Alejandro; González de Audícana Amenábar, María; González de Andrés, Ester; Zientziak; Ingeniaritza; Institute for Multidisciplinary Research in Applied Biology - IMAB; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ciencias; Ingeniería; Gobierno de Navarra / Nafarroako GobernuaThe aim of this study was to assess the utility of Sentinel-2 images in the monitoring of the fractional vegetation cover (FVC) of rainfed alfalfa in semiarid areas such as that of Bardenas Reales in Spain. FVC was sampled in situ using 1 m2 surfaces at 172 points inside 18 alfalfa fields from late spring to early summer in 2017 and 2018. Different vegetation indices derived from a series of Sentinel-2 images were calculated and were then correlated with the FVC measurements at the pixel and parcel levels using different types of equations. The results indicate that the normalized difference vegetation index (NDVI) and FVC were highly correlated at the parcel level (R 2 = 0.712), where as the correlation at the pixel level remained moderate across each of the years studied. Based on the findings, another 29 alfalfa plots (28 rainfed; 1 irrigated) were remotely monitored operationally for 3 years (2017–2019), revealing that location and weather conditions were strong determinants of alfalfa growth in Bardenas Reales. The results of this study indicate that Sentinel-2 imagery is a suitable tool for monitoring rainfed alfalfa pastures in semiarid areas, thus increasing the potential success of pasture management.Publication Open Access Estrategia para la verificación de declaraciones PAC a partir de imágenes Sentinel-2 en Navarra(Universidad Politécnica de Valencia, 2020) González de Audícana Amenábar, María; López Sáenz, Sandra; Sola Torralba, Ion; Álvarez-Mozos, Jesús; Ingeniería; IngeniaritzaEn junio de 2018, la Comisión Europea aprobó una modificación de la Política Agraria Común (PAC) que, entre otros aspectos, plantea el uso de imágenes del programa Copernicus para verificar que las declaraciones presentadas por los agricultores son correctas. En los últimos años distintas iniciativas investigadoras han tratado de desarrollar herramientas operativas con este fin, entre estas se encuentra el proyecto Interreg-POCTEFA PyrenEOS. En este artículo se expone la estrategia metodológica propuesta en el proyecto PyrenEOS, que se basa en la identificación del cultivo más probable utilizando el algoritmo Random Forests. Como elemento diferenciador, se propone seleccionar la muestra de entrenamiento a partir de una selección de las declaraciones PAC según su NDVI. Además, se definen una serie de reglas para determinar el grado de incertidumbre en la clasificación y los criterios para categorizar cada recinto del mapa de verificación según un código de colores a modo de semáforo, en el que el verde indica recintos con declaración correcta, el rojo recintos con declaración dudosa y el naranja recintos con una incertidumbre alta en la clasificación. Esta estrategia de verificación se aplica a dos Comarcas Agrarias de Navarra, en una campaña agrícola para la que se contó con inspecciones de campo de aproximadamente el 7% de los recintos declarados. Los resultados de esta validación, con fiabilidades globales en la clasificación próximas al 80% cuando se considera el cultivo más probable predicho por el clasificador y al 90% cuando se consideran los dos cultivos más probables, ponen de manifiesto que es posible identificar los recintos correctamente declarados (recintos verdes) con una tasa de error inferior al 1%. Los recintos naranjas y rojos, que requerirán del análisis y juicio posterior de técnicos de inspección, suponen un porcentaje reducido de las declaraciones (~6% de los recintos) y concentran la mayoría de las declaraciones incorrectas.Publication Open Access New methodology for wheat attenuation correction at C-Band VV-polarized backscatter time series(IEEE, 2022) Arias Cuenca, María; Campo-Bescós, Miguel; Arregui Odériz, Luis Miguel; González de Audícana Amenábar, María; Álvarez-Mozos, Jesús; Agronomia, Bioteknologia eta Elikadura; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Agronomía, Biotecnología y Alimentación; IngenieríaWheat is one of the most important crops worldwide, and thus the use of remote sensing data for wheat monitoring has attracted much interest. Synthetic Aperture Radar (SAR) observations show that, at C-band and VV polarization, wheat canopy attenuates the surface scattering component from the underlying soil during a significant part of its growth cycle. This behavior needs to be accounted for or corrected before soil moisture retrieval is attempted. The objective of this paper is to develop a new method for wheat attenuation correction (WATCOR) applicable to Sentinel-1 VV time series and based solely on the information contained in the time series itself. The hypothesis of WATCOR is that without attenuation, VV backscatter would follow a stable long-term trend during the agricultural season, with short-term variations caused by soil moisture dynamics. The method relies on time series smoothing and changing point detection, and its implementation follows a series of simple steps. The performance of the method was compared by evaluating the correlation between backscatter and soil moisture content in six wheat fields with available soil moisture data. The Water Cloud Model (WCM) was also applied as a benchmark. The results showed that WATCOR successfully removed the attenuation in the time series, and achieved the highest correlation with soil moisture, improving markedly the correlation of the original backscatter. WATCOR can be easily implemented, as it does not require parameterization or any external data, only an approximate indication of the period where attenuation is likely to occur.