Martín Iglesias, Petronilo

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Martín Iglesias

First Name

Petronilo

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 20
  • PublicationOpen Access
    Multipactor breakdown analysis of Ku-band meandered low-pass filter
    (2022) Sami, Abdul; Teberio Berdún, Fernando; Arnedo Gil, Israel; Martín Iglesias, Petronilo; Lopetegui Beregaña, José María; Gómez Laso, Miguel Ángel; Arregui Padilla, Iván; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In this work, a very compact rectangular waveguide low-pass filter with meandered topology based on commensurate lines for Ku-band satellite applications is analysed for high-power handling capabilities. The device consists of rectangular waveguide sections properly cascaded to form a meandered topology to obtain the desired value of the local reflection coefficients. which are essential to achieve the target frequency response and also to keep large mechanical gaps. Hence, this technique allows us not only to design a filter with compact size but a filter geometry which is suitable for high power applications. In the paper, the low-pass filter based on commensurate lines is first designed by cascading E-plane mitered bends (±90° EMBs) in CST Microwave Studio (MWS) and then the values of the electromagnetic fields at the passband frequencies are exported to Spark3D to perform a multipactor analysis. The critical areas inside the device where the multipactor discharge occurs will also be identified in the high-power analysis. https://doi.org/10.5281/zenodo.7343236
  • PublicationOpen Access
    Compact harmonic rejection filter for C-band high-power satellite applications
    (IEEE, 2020) Teberio Berdún, Fernando; Martín Iglesias, Petronilo; Arregui Padilla, Iván; Arnedo Gil, Israel; Lopetegui Beregaña, José María; Gómez Laso, Miguel Ángel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    A compact high-power low-pass filter for C-band broadband satellite applications is presented in this paper. The filter is composed of three different sections. A 9th-order compact high-power multi-ridge structure achieves the fundamental mode stopband and the suppression of all-higher order modes. The required slope between the pass- and the stopband is accomplished by means of two step-shaped bandstop elements separated by very short waveguide sections. The passband of the filter is achieved through two compact matching networks. The filter is only 164-mm long, has less than 0.05 dB of insertion loss, handles 9.6 kW (single-carrier multipactor analysis), and has a very wide stopband (up to Ku-band). A dramatic size reduction has been achieved with respect to other commercially available solutions.
  • PublicationOpen Access
    Sistema de medición de condiciones atmosféricas basado en el estudio del flujo de muones
    (Universidad de Castilla La Mancha, 2024) Armendáriz Armenteros, Miguel Ángel; Vertiz Conde, Amaia; Martín Iglesias, Petronilo; Gómez Laso, Miguel Ángel; Muro Pérez, Aitor; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    To date, there is no straightforward method for monitoring meteorological conditions in real-time through experimental measurements. Consequently, all weather predictions rely on forecasting models, which are unable to adapt to actual weather changes, thereby compromising their accuracy. The project described in this paper seeks to establish a weather measurement system that leverages the relationship between climatic conditions and the phenomena of cosmic ray degradation and muon generation. If this relationship is accurately defined, it could lead to the development of a model that predicts atmospheric conditions based on the flux of muons and cosmic rays and the occurrence of the aforementioned phenomena. This paper provides a theoretical foundation to support the viability of the project, outlines the proposed configuration of the system, and discusses the implementation of its most crucial components. This project was undertaken by students from the Degree in Engineering in Telecommunication Technologies at the Public University of Navarre (UPNA), within the course Projects in Telecommunication Systems
  • PublicationEmbargo
    Additive manufacturing-oriented designs for space RF/microwave applications and high-power considerations
    (2025) Martín Iglesias, Petronilo; Gómez Laso, Miguel Ángel; Boria Esbert, Vicente; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektriko eta Elektronikoaren eta Komunikazio Ingeniaritzaren
    This thesis delves into the intricate relationship between additive manufacturing and high-power operation within the field of RF/microwave components. Two fundamental themes guide this research: advancements in materials and a deep understanding of material characterization, particularly focusing on the impact of properties like surface roughness on Secondary Electron Emission (SEE) and high-frequency performance. These themes are deeply intertwined, with a comprehensive grasp of one significantly influencing the others. For instance, a thorough understanding of a specific additive manufacturing process and its inherent characteristics is crucial for optimizing the design of components that fully exploit the process’s unique capabilities, streamlining the design and analysis phases, and ultimately pushing the boundaries of RF performance by increasing power handling or miniaturizing components. This understanding serves as the foundation for selecting the most suitable additive manufacturing process for a given application. Chapters 2, 3, and 4 provide concrete examples of this interplay, demonstrating how surface roughness can be strategically manipulated to minimize multipactor risk and enhance peak power handling, intentionally increased to create effective metal loads with good impedance matching, or carefully reduced to optimize performance at high power levels. Furthermore, this thesis introduces a novel material with exceptional thermal stability, promising significant advancements in high-power device performance by offering a compelling pathway towards improved thermal conductivity and enhanced operational stability.
  • PublicationOpen Access
    Integrating multiple stubs in stepped-impedance filter aiming for high selectivity
    (IET, 2022) Sami, Abdul; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Arnedo Gil, Israel; Calero Fernández, Ibai; Teberio Berdún, Fernando; Martín Iglesias, Petronilo; Benito Pertusa, David; Arregui Padilla, Iván; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    A design technique to include multiple and fully-controlled transmission zeros (TZs) in the frequency response of rectangular waveguide commensurate-line stepped-impedance filters is presented in this letter. These bandpass filters (BPFs) are known for having reduced sensitivities against manufacturing inaccuracies and are composed of multiple waveguide sections. In order to improve their selectivity, 3λg/4 and λg/4-stubs are included to create multiple TZs around the passband. The proposed technique allows us to add multiple stubs in a single section and, therefore, only minor adjustments in the affected part of the filter are required, which simplifies the overall design process. The technique has been verified with a design example with four TZs (two on each side) near the passband.
  • PublicationOpen Access
    Diseño de filtros en tecnología de línea coaxial sin dieléctricos mediante impresión 3D
    (Universidad de Castilla La Mancha, 2024) Pons Abenza, Alejandro; Arregui Padilla, Iván; Lopetegui Beregaña, José María; Gómez Laso, Miguel Ángel; Álvarez Botero, Germán Andrés; Martín Iglesias, Petronilo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    This article presents the design and manufacturing of a fully metallic X-band bandpass filter in coaxial-line technology. The device is 3D-printed as a self-supported structure without any dielectric inside. A short-circuit λ/4 parallel stub bandpass filter provides the required mechanical support for the self-supported 3D-printing process. To enhance filter out-of-band performance, a second stage consisting of a stepped-impedance low-pass filter is integrated, also using coaxial-line technology. Both filters are designed separately and then combined to achieve desired frequency specifications. A prototype with a passband at X-band (between 8 and 12 GHz) is manufactured using Selective Laser Melting, showing excellent agreement between simulations and measurements. This approach promises highly integrated, multifunctional monoblock coaxial filters with additional benefits such as increased RF shielding and protection against electrostatic discharge.
  • PublicationOpen Access
    Integración de múltiples stubs en filtros de saltos de impedancias de alta selectividad
    (URSI, 2023) Gómez Laso, Miguel Ángel; Sami, Abdul; Lopetegui Beregaña, José María; Martín Iglesias, Petronilo; Álvarez Botero, Germán Andrés; Pons Abenza, Alejandro; Arregui Padilla, Iván; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    Rectangular waveguide commensurate-line stepped-impedance bandpass filters have been shown to have an increased fabrication robustness using conventional CNC milling. In this paper, their frequency response is improved by adding multiple transmission zeros at fully-controlled positions around the passband. The technique starts with the design of the filter without transmission zeros and only requires that one of the filter sections is slightly redesigned, while the rest keep unaltered, when lambda_g/¿¿ and 3*lambda_g/¿¿ stubs are included in the section to increase the overall filter selectivity around the passband. The design example is a 7th-order Chebyshev bandpass filter in Ku-band.
  • PublicationOpen Access
    Enhancement of the peak power handling capability in microstrip filters by employing smooth-profiled conductor strips
    (2023) Ahmad, Jamil; Hussain, Jabir; Arregui Padilla, Iván; Martín Iglesias, Petronilo; Arnedo Gil, Israel; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    This paper presents a design methodology that significantly increases the peak power handling capability (PPHC) of microstrip filters. The PPHC is limited in microstrip technology by the corona effect: a physical phenomenon caused by the ionization of the air under the presence of strong electric fields around the planar circuit. Microstrip filters with a low electric field strength in the air increases the corona threshold level, resulting in high PPHC. Conventional stepped impedance (SI) filters, which consist of cascaded step-shaped elements, exhibit sharp discontinuities. These geometric edges amplify the electric field strength in the air, consequently reducing the corona threshold. Our research group has recently reported a new synthesis technique that introduces a smooth-profile (SP) conductor strip. This SP strip eliminates any sharp discontinuities and significantly reduces the strength of the electric field. This paper focuses on the examination of the high power performance of 7th-order SP and SI low-pass filters. The cut-off frequency (fc) for both types of filters is set at 447.45 MHz, while the frequency for maximum stop-band rejection (fo) is 1 GHz. The findings indicate that the SP filter shows a notable enhancement in peak power handling capability (PPHC), with gains of 2.48 dB and 4.80 dB observed at critical pressure and ambient pressure, respectively.
  • PublicationOpen Access
    Routing with classical corrugated waveguide low-pass filters with embedded bends
    (EMW Publishing, 2018) Teberio Berdún, Fernando; Percaz Ciriza, Jon Mikel; Arregui Padilla, Iván; Martín Iglesias, Petronilo; Lopetegui Beregaña, José María; Gómez Laso, Miguel Ángel; Arnedo Gil, Israel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    A very simple design method to embed routing capabilities in classical corrugated filters is presented in this paper. The method is based on the calculation of the heights and lengths of the so-called filters design building blocks, by means of a consecutive and separate extraction of their local reflection coefficients along the device. The proposed technique is proved with a 17th-order Zolotarev filter whose topology is bent twice so that the input and output ports are in the same plane while preserving the in-line filters behaviour. This new filter allows the possibility of eliminating subsequent bending structures, reducing the insertion loss, weight, and PIM.
  • PublicationOpen Access
    Design of an additively-manufactured self-supported all-metal coaxial-line X-band bandpass filter
    (IEEE, 2024) Pons Abenza, Alejandro; Arregui Padilla, Iván; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Martín Iglesias, Petronilo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    In this contribution, the design and manufacturing of an all-metal coaxial-line X-band bandpass filter is discussed. The device is 3D-printed as a self-supported structure without any dielectric inside the coaxial. The mechanical support between the inner and outer coaxial-line conductors is provided by means of λ/4 short-circuited stubs, which are also used in the bandpass filter design. The real transmission zeros (TZs) produced by the short-circuited stubs are responsible for a high filter selectivity. In order to enhance the filter performance, a second stage consisting in a coaxial-line stepped-impedance low-pass filter is integrated in the design to provide the rejection level required for the out-of-band behaviour. Following our design method, the bandpass and low-pass filters are designed separately, and a final matching step is performed to connect both and to achieve the aimed frequency specifications. In this way, a monoblock coaxial filter with very good in-band and out-of-band performance can by obtained by using an additive manufacturing (AM) procedure. Only the input/output (I/O) coaxial connectors will need to be assembled to the filter to perform the frequency measurements. The filters in this work can be seen as a first proposal towards more complex multi-functional monoblock structures using additively-manufactured coaxial technology, for highly-integrated RF chains. Other expected benefits beyond the compactness or lightweight are an increased RF shielding, electrostatic discharge risk reduction, and Passive Intermodulation (PIM) protection. In the paper, a prototype with a passband between 8 and 12 GHz is designed and manufactured, using a bandpass filter with three stubs and an integrated 15th-order low-pass filter, providing rejection for spurious frequencies up to 30 GHz. The filter is manufactured using Selective Laser Melting (SLM) and measurements show an excellent agreement with the simulations.