Person:
Muñoz Carpena, Rafael

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Muñoz Carpena

First Name

Rafael

person.page.departamento

Ingeniería

person.page.instituteName

ORCID

0000-0003-2838-1514

person.page.upna

811780

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Demonstrating correspondence between decision-support models and dynamics of real-world environmental systems
    (Elsevier, 2016) Huffaker, Ray; Muñoz Carpena, Rafael; Campo-Bescós, Miguel; Southworth, Jane; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak
    There are increasing calls to audit decision-support models used for environmental policy to ensure that they correspond with the reality facing policy makers. Modelers can establish correspondence by providing empirical evidence of real-world behavior that their models skillfully simulate. Since real-world behavior—especially in environmental systems—is often complex, credibly modeling underlying dynamics is essential. We present a pre-modeling diagnostic framework based on Nonlinear Time Series (NLTS) methods for reconstructing real-world environmental dynamics from observed data. The framework is illustrated with a case study of saltwater intrusion into coastal wetlands in Everglades National Park, Florida, USA. We propose that environmental modelers test for systematic dynamic behavior in observed data before resorting to conventional stochastic exploratory approaches unable to detect this valuable information. Reconstructed data dynamics can be used, along with other expert information, as a rigorous benchmark to guide specification and testing of environmental decision-support models corresponding with real-world behavior.
  • PublicationOpen Access
    Dynamic prediction of effective runoff sediment particle size for improved assessment of erosion mitigation efficiency with vegetative filter strips
    (Elsevier, 2023) Reichenberger, Stefan; Sur, Robin; Sittig, Stephan; Multsch, Sebastián; Carmona Cabrero, Álvaro; López Rodríguez, José Javier; Muñoz Carpena, Rafael; Ingeniería; Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertstitate Publikoa
    The most widely implemented mitigation measure to reduce transfer of surface runoff pesticides and other pollutants to surface water bodies are vegetative filter strips (VFS). The most commonly used dynamic model for quantifying the reduction by VFS of surface runoff, eroded sediment, pesticides and other pollutants is VFSMOD, which simulates reduction of total inflow (ΔQ) and of incoming eroded sediment load (ΔE) mechanistically during the rainfall-runoff event. These variables are subsequently used to calculate the reduction of pesticide load by the VFS (ΔP). Since errors in ΔQ and ΔE propagate into ΔP, for strongly-sorbing compounds an accurate prediction of ΔE is crucial for a reliable prediction of ΔP. The most important incoming sediment characteristic for ΔE is the median particle diameter (d50). Current d50 estimation methods are simplistic, yielding fixed d50 based on soil properties and ignoring specific event characteristics and dynamics. We derive an improved dynamic d50 parameterization equation for use in regulatory VFS scenarios based on an extensive dataset of 93 d50 values and 17 candidate explanatory variables compiled from heterogeneous data sources and methods. The dataset was analysed first using machine learning techniques (Random Forest, Gradient Boosting) and Global Sensitivity Analysis (GSA) as a dimension reduction technique and to identify potential interactions between explanatory variables. Using the knowledge gained, a parsimonious multiple regression equation with 6 predictors was developed and thoroughly tested. Since three of the predictors are eventspecific (eroded sediment yield, rainfall intensity and peak runoff rate), predicted d50 vary dynamically across event magnitudes and intensities. Incorporation of the improved d50 parameterization equation in higher-tier pesticide assessment tools with VFSMOD provides more realistic quantitative mitigation in regulatory US-EPA and EU FOCUS pesticide risk assessment frameworks. The equation is also readily applicable to other erosion management problems.