Lo, Yueh-Hsin
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Lo
First Name
Yueh-Hsin
person.page.departamento
Ciencias
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
21 results
Search Results
Now showing 1 - 10 of 21
Publication Open Access Land use change effects on carbon and nitrogen stocks in the Pyrenees during the last 150 years: a modelling approach(Elsevier, 2015) Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; Canals Tresserras, Rosa María; González de Andrés, Ester; San Emeterio Garciandía, Leticia; Imbert Rodríguez, Bosco; Castillo Martínez, Federico; Ciencias del Medio Natural; Natura Ingurunearen ZientziakIn the southern Pyrenees, human population and therefore land uses have changed from forests to pastures, then crops, and back to pastures and secondary forests during the last two centuries. To understand what such rapid land use changes have meant for carbon (C) and nitrogen (N) stocks, we used data from two forest sites in the western Pyrenees, combined with regional data on pastures and crop production (potato, cereal), to calibrate the ecosystem-level model FORECAST. Then, we simulated 150-year of land use for each site, emulating historical changes. Our estimates show that the conversion from forests into pastures and crops created C and N deficits (378-427 Mg C ha-1, 4.0-4.6 Mg N ha-1) from which these sites are still recovering. The main ecological process behind the creation of these deficits was the loss of the ecological legacy of soil organic matter (SOM) created by the forest, particularly during conversion to farming. Pastures were able to reverse, stop or at least slow down the loss of such legacy. In conclusion, our work shows the deep impact of historical land use in ecosystem attributes, both in magnitude of removed C and N stocks and in duration of such impact. Also, the usefulness of ecological modelling in absence of historical data to estimate such changes is showcased, providing a framework for potential C and N stocks to be reached by climate change mitigation measures such as forest restoration.Publication Open Access Highlighting complex long-term succession pathways in mixed forests of the Pacific Northwest: a Markov chain modelling approach(MDPI, 2021) Blanco Vaca, Juan Antonio; Lo, Yueh-Hsin; Kimmins, J.P. (Hamish); Weber, Adrian; Ciencias; ZientziakForest succession is an ecological phenomenon that can span centuries. Although the concept of succession was originally formulated as a deterministic sequence of different plant communities by F. Clements more than a century ago, nowadays it is recognized that stochastic events and disturbances play a pivotal role in forest succession. In spite of that, forest maps and management plans around the world are developed and focused on a unique “climax” community, likely due to the difficulty of quantifying alternative succession pathways. In this research, we explored the possibility of developing a Markov Chain model to study multiple pathway succession scenarios in mixed forests of western red cedar, hemlock and Pacific silver fir on northern Vancouver Island (western Canada). We created a transition matrix using the probabilities of change between alternative ecological stages as well as red cedar regeneration. Each ecological state was defined by the dominant tree species and ages. Our results indicate that, compared to the traditional Clementsian, deterministic one-pathway succession model, which is unable to replicate current stand distribution of these forests in the region, a three-pathway stochastic succession model, calibrated by a panel of experts, can mimic the observed landscape distribution among different stand types before commercial logging started in the region. We conclude that, while knowing the difficulty of parameterizing this type of models, their use is needed to recognize that for a given site, there may be multiple “climax” communities and hence forest management should account for them.Publication Open Access Resilience assessment of lowland plantations using an ecosystem modeling approach(MDPI, 2015) Wu, Chia-Hsin; Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; Chang, Shih-Chieh; Ciencias del Medio Natural; Natura Ingurunearen ZientziakAs afforestation programs of former farmlands take hold in Taiwan to achieve a variety of ecological and socio-economic values, it is becoming necessary to define best forest management. Hence, we simulated mixed stands of Cinnamomum camphora and Fraxinus griffithii planted through a gradient of soil fertility and varying camphor/ash density ratios, but maintaining a fixed total stand density of 1500 trees ha −1 . Total stand productivity was slightly lower in mixed stands than the combination of both monocultures in rich and poor sites. Maximum negative yield surpluses for 50-year old stands were 7 Mg ha −1 and 6 Mg ha −1 for rich and poor sites with a 1:1 camphor laurel/ash ratios. Maximum stand woody biomass in rich sites was reached in camphor laurel monocultures (120 Mg ha −1 ) and in poor sites for Himalayan ash monocultures (58 Mg ha −1 ). However, for medium-quality sites, a small yield surplus (11 Mg ha −1 ) was estimated coinciding with a maximum stand woody biomass of 95 Mg ha −1 for a 1:1 camphor laurel/ash density ratio. From an ecological resilience point of view, rotation length was more important than stand composition. Long rotations (100 years) could improve soil conditions in poor sites. In rich sites, short rotations (50 years) should be avoided to reduce risks or fertility loss.Publication Open Access ¿Están los bosques mixtos pirenaicos de pino silvestre y haya en el camino hacia la saturación por nitrógeno?(Asociación Española de Ecología Terrestre, 2017) Blanco Vaca, Juan Antonio; San Emeterio Garciandía, Leticia; González de Andrés, Ester; Imbert Rodríguez, Bosco; Larrainzar Rodríguez, Estíbaliz; Peralta de Andrés, Francisco Javier; Lo, Yueh-Hsin; Castillo Martínez, Federico; Ciencias del Medio Natural; Natura Ingurunearen ZientziakLas actividades humanas causan altos niveles de deposición atmosférica crónica de N que pueden estar trastornando el ciclo del N en los bosques de los Pirineos occidentales. Para probar esta hipótesis, se han investigado los efectos de la deposición de N atmosférico en el ciclo de N en dos bosques mixtos de pino silvestre y haya en Navarra. Un bosque está situado a 1350 m de altitud y tiene un clima continental, mientras que el otro está situado a 650 m y tiene un clima mediterráneo húmedo. Pruebas preliminares indicaron una fijación biológica de N 2 atmosférico indetectable, así como la casi nula presencia de plantas con simbiontes fijadores como en la actividad de fijadores libres. Por lo tanto se asumió que la principal entrada de N en estos bosques es la deposición atmosférica. Se estimó la dependencia de la productividad de estos ecosistemas de la deposición por medio del modelo ecológico FORECAST, calibrado para estos sitios. Se simularon seis escenarios con tasas de deposición en un rango de 5 a 30 kg ha -1 año -1 . Los resultados indicaron que la productividad de estos bosques es dependiente de la deposición de N, pero indicios de saturación por N (aumento de lixiviación y carencia de aumento de productividad) indican que pueden saturarse a partir de 20-25 kg N ha -1 año -1 , unos 5-10 kg N ha -1 año -1 por encima de los niveles observados actualmente.Publication Open Access Survival and growth as measures of shade tolerance of planted western redcedar, western hemlock and amabilis fir seedlings in hemlock-fir forests of northern Vancouver Island(Elsevier, 2017) Weber, Adrian; Leckie, Sara; Kimmins, J.P. (Hamish); Gilbert, Benjamin; Blanco Vaca, Juan Antonio; Lo, Yueh-Hsin; Ciencias del Medio Natural; Natura Ingurunearen ZientziakWe examined two measures of shade tolerance (survival and growth) of planted 1-year-old seedlings of western redcedar (Thuja plicata (Donn ex D. Don)), western hemlock (Tsuga heterophylla ([Raf.] Sarg.)) and amabilis fir (Abies amabilis ([Dougl. ex Loud] Dougl. ex Forbes)). Seedlings were planted at two different sites (forest interior: 4.5% mean above canopy photosynthetically active radiation [ACPAR], and forest edge: 41.5% mean ACPAR), in a 90-year-old, windthrow origin, unmanaged mesic western hemlock-amabilis fir stand. Seedlings were planted in 1997, and re-measured in 1998 and 2001 (after five growing seasons). To assess the effects of deer browsing on redcedar survival and growth, additional seedlings of this species were planted and protected with Vexar© tubes. To examine for nutrient-light interactions, half of these seedlings were fertilized with N-P-K and micronutrients at planting. Western redcedar had high levels of survival after 4 years (98% in edge plots and 93% in interior plots). Redcedar seedlings in edge plots were more vigorous but were browsed more heavily than in the interior plots. At edge sites, the negative effects of the Vexar© tubes may have been lower than their positive effects. Hemlock survival was about 50% in the stand interior but 80% in the edge plots. Amabilis fir in the interior plots had the lowest survival of the three species, with only 40% of initial seedlings surviving over the next four years, but had high survival in edge plots (95%). Height, biomass, and root collar diameter growth were significantly higher in edge plots for fir and hemlock. However, for redcedar, only biomass was significantly higher and no differences were detected for height and diameter. Our results show that shade tolerance cannot be assessed by simple measures of leaf/light relationships alone, but also requires consideration of light, nutrition, growth and browsing.Publication Open Access Increased complementarity in water-limited environments in Scots pine and European beech mixtures under climate change(Wiley, 2017) González de Andrés, Ester; Seely, Brad; Blanco Vaca, Juan Antonio; Imbert Rodríguez, Bosco; Lo, Yueh-Hsin; Castillo Martínez, Federico; Ciencias del Medio Natural; Natura Ingurunearen ZientziakManagement of mixedwoods is advocated as an effective adaptation strategy to increase ecosystem resiliency in the context of climate change. While mixedwoods have been shown to have greater resource use efficiency relative to pure stands, considerable uncertainty remains with respect to the underlying ecological processes. We explored species interactions in Scots pine / European beech mixedwoods with the process-based model FORECAST Climate. The model was calibrated for two contrasting forests in the southwestern Pyrenees (northern Spain): a wet Mediterranean site at 625 m.a.s.l. and a subalpine site at 1335 m.a.s.l. Predicted mixedwood yield was higher than that for beech stands but lower than pine stands. When simulating climate change, mixedwood yield was reduced at the Mediterranean site (-33%) but increased at the subalpine site (+11%). Interaction effects were enhanced as stands developed. Complementarity dominated the Mediterranean stand but neutral or net competition dominated the subalpine stand, which had higher stand density and water availability. Reduced water demand and consumption, increased canopy interception, and improved water-use efficiency in mixtures compared to beech stands suggest a release of beech intra-specific competition. Beech also facilitated pine growth through better litter quality, non-symbiotic nitrogen fixation and above- and belowground stratification, leading to higher foliar nitrogen content and deeper canopies in pines. In conclusion, mixtures may improve water availability and use efficiency for beech and light interception for pine, the main limiting factors for each species, respectively. Encouraging pine-beech mixtures could be an effective adaptation to climate change in drought-prone sites in the Mediterranean region.Publication Open Access Multiple pathway succession in coastal Tsuga heterophylla, Thuja plicata and Abies amabilis forests on northeastern Vancouver Island, British Columbia(NRC Research Press, 2014) Weber, Adrian; Kimmins, J.P. (Hamish); Gilbert, Benjamin; Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; Ciencias del Medio Natural; Natura Ingurunearen ZientziakSustainable forest practices are often designed to mimic natural disturbance and successional processes, yet succession is poorly understood in many ecosystems. On northeastern Vancouver Island, the ‘disturbance hypothesis’ is a widely-assumed succession model that asserts shade tolerant western redcedar (Thuja plicata) and the ericaceous shrub salal (Gaultheria shallon) invade and colonize highly productive western hemlock (Tsuga heterophylla) – Pacific silver fir (Abies amabilis) stands (HA) on zonal sites in the absence of stand-replacing wind disturbance. This leads to the development of low productivity, low density, uneven-aged, open-crowned redcedar-hemlock-salal stands (CH). In conflict with this model, old, apparently stable HA stands lacking redcedar can be found on such sites as well. We sought evidence for the predicted transition to CH stands by examining stand composition, crown closure, tree size class frequency distributions, salal cover, and redcedar establishment on young HA (~90 years old), old HA (>160 years), and CH (>160 years) stands. When adjacent to a redcedar stand, young HA stands had fewer redcedar seedlings but more redcedar adult trees than old HA stands. However, redcedar abundance did not differ between young and old HA stands at distances further than 10 m from adjacent redcedar stands. This could indicate that redcedar recruits into HA stands at stand establishment, and that redcedar seedling establishment is low under the thick canopy of young HA stands. The chronosequence data also suggest that both old HA and CH stands are self-replacing stand types in these forests, contrary to the disturbance hypothesis. We develop a new, multi-pathway model for this ecosystem that is based on the chronosequence data and life-history traits of the focal tree species, and suggest that disturbance plays a role opposite to the equilibrium model.Publication Open Access Drought limits tree growth more than greenness and reproduction: insights from five case studies in Spain(KeAi Communications, 2025-08-01) Camarero, Jesús Julio; Rubio-Cuadrado, Álvaro; González de Andrés, Ester; Valeriano, Cristina; Pizarro, Manuel; Imbert Rodríguez, Bosco; Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMABDroughts impact forests by influencing various processes such as canopy greenness, tree growth, and reproduction, but most studies have only examined a few of these processes. More comprehensive assessments of forest responses to climate variability and water shortages are needed to improve forecasts of post-drought dynamics. Iberian forests are well-suited for evaluating these effects because they experience diverse climatic conditions and are dominated by various conifer and broadleaf species, many of which exhibit masting. We assessed how greenness, evaluated using the normalized difference vegetation index (NDVI), tree radial growth, and seed or cone production responded to drought in five tree species (three conifers: silver fir (Abies alba), Scots pine (Pinus sylvestris), and stone pine (Pinus pinea); two broadleaves: European beech (Fagus sylvatica) and holm oak (Quercus ilex) inhabiting sites with different aridity. We correlated these data with the standardized precipitation evapotranspiration index (SPEI) using the climate window analysis (climwin) package, which identifies the most relevant climate window. Drought constrained growth more than greenness and seed or cone production. Dry conditions led to high seed or cone production in species found in cool, moist sites (silver fir, beech, and Scots pine). We also found negative associations of cone production with summer SPEI in the drought-tolerant stone pine, which showed lagged growth−cone negative correlations. However, in the seasonally dry holm oak forests, severe droughts constrained both growth and acorn production, leading to a positive correlation between these variables. Drought impacts on greenness, growth, seed, and cone production depended on species phenology and site aridity. A negative correlation between growth and reproduction does not necessarily indicate trade-offs, as both may be influenced by similar climatic factors.Publication Open Access Productivity of forests ecoystems(Earthscan, 2017) Blanco Vaca, Juan Antonio; Lo, Yueh-Hsin; Welham, Clive; Larson, Bruce; Ciencias del Medio Natural; Natura Ingurunearen ZientziakIn this chapter, we examine both the factors affecting forest ecosystem productivity, and the ways that forest management can influence these. Much forestry training is related to the manner in which productivity can be measured and monitored, but here we assume that readers have this basic level of training, and it is not further elaborated.Publication Open Access Douglas-fir radial growth in interior British Columbia can be linked to long-term oscillations in Pacific and Atlantic sea surface temperatures(NCR Research Press, 2017) Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; Guan, Biing T.; Ciencias del Medio Natural; Natura Ingurunearen ZientziakA major problem in modern dendrochronology is that the methods traditionally used for linking tree ring growth data to climate records are not well suited to reconstructing low-frequency climatic variations. In this study, we explored the alternative Ensemble Empirical Mode Decomposition to detrend tree-ring records and to extract climate signals without removing low-frequency information. Tree cores of Pseudotsuga menziesii var. glauca (Mayr.) Franco were examined in a semi-arid forest in southern interior British Columbia, western Canada. Ring width data were decomposed into five oscillatory components (intrinsic mode functions, IMFs) of increasingly longer periodicities. IMF 1 was considered white noise, IMF 2 was used to create the first diameter growth index (DGI-1), IMF 3 and IMF 4 were combined to create the second diameter growth index (DGI-2), whereas IMF 5 and the residual term together were considered as the trend term. The highest significant cross-correlations between DGI-1 and the NAOAugust, NIÑO12May, and PDOJanuary indices were found at 1-year lags. DGI-2 had positive and persistent correlations with NAOJune and PDOMay at 0 to 3 years lags, and with NAOMay at 2 and 3 years lags. Our results indicate that periods of slow growth in the tree ring record matched periods of drought in the North American Pacific Northwest. Such water limiting conditions are likely caused by oscillatory patterns in the Pacific Ocean sea surface temperatures that influence precipitation in the Pacific Northwest. These drought events are likely exacerbated by changes in winter precipitation (snowpack) related to oscillations of the Atlantic Ocean sea surface temperatures, highlighting the ecological effects of both oceans on terrestrial ecosystems. Such relationships could not be easily found by traditional tree-ring analysis that remove some of the low-frequency signal, and therefore we suggest Ensemble Empirical Mode Decomposition as an additional tool to establishing tree growth-climate relationships.
- «
- 1 (current)
- 2
- 3
- »