Lo, Yueh-Hsin

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Lo

First Name

Yueh-Hsin

person.page.departamento

Ciencias

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 22
  • PublicationOpen Access
    Resilience assessment of lowland plantations using an ecosystem modeling approach
    (MDPI, 2015) Wu, Chia-Hsin; Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; Chang, Shih-Chieh; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    As afforestation programs of former farmlands take hold in Taiwan to achieve a variety of ecological and socio-economic values, it is becoming necessary to define best forest management. Hence, we simulated mixed stands of Cinnamomum camphora and Fraxinus griffithii planted through a gradient of soil fertility and varying camphor/ash density ratios, but maintaining a fixed total stand density of 1500 trees ha −1 . Total stand productivity was slightly lower in mixed stands than the combination of both monocultures in rich and poor sites. Maximum negative yield surpluses for 50-year old stands were 7 Mg ha −1 and 6 Mg ha −1 for rich and poor sites with a 1:1 camphor laurel/ash ratios. Maximum stand woody biomass in rich sites was reached in camphor laurel monocultures (120 Mg ha −1 ) and in poor sites for Himalayan ash monocultures (58 Mg ha −1 ). However, for medium-quality sites, a small yield surplus (11 Mg ha −1 ) was estimated coinciding with a maximum stand woody biomass of 95 Mg ha −1 for a 1:1 camphor laurel/ash density ratio. From an ecological resilience point of view, rotation length was more important than stand composition. Long rotations (100 years) could improve soil conditions in poor sites. In rich sites, short rotations (50 years) should be avoided to reduce risks or fertility loss.
  • PublicationOpen Access
    Determinants and tools to evaluate the ecological sustainability of using forest biomass as an alternative energy source
    (2018) Blanco Vaca, Juan Antonio; Candel Pérez, David; Lo, Yueh-Hsin; Ciencias; Zientziak; Gobierno de Navarra / Nafarroako Gobernua, PI037 InFORest
    Forest biomass, the most ancient of fuels, is again in the center of renewable energy production. This chapter provides an introductory view of the main factors that condition the ecological sustainability of this energy source. The basic concepts of ecological sustainability, ecological rotation, and ecological thresholds (among others) are presented. The state of the art on approaches to assess the sustainability of forest biomass production for heat and electricity is discussed, and tools available for decision-makers to evaluate the sustainability of forest biomass production and management are described. This chapter then describes the main advantages and drawbacks of forest certification, growth and yield tables, and ecological models in relationship to their use in sustainable forest management for biomass and energy production.
  • PublicationOpen Access
    Land use change effects on carbon and nitrogen stocks in the Pyrenees during the last 150 years: a modelling approach
    (Elsevier, 2015) Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; Canals Tresserras, Rosa María; González de Andrés, Ester; San Emeterio Garciandía, Leticia; Imbert Rodríguez, Bosco; Castillo Martínez, Federico; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    In the southern Pyrenees, human population and therefore land uses have changed from forests to pastures, then crops, and back to pastures and secondary forests during the last two centuries. To understand what such rapid land use changes have meant for carbon (C) and nitrogen (N) stocks, we used data from two forest sites in the western Pyrenees, combined with regional data on pastures and crop production (potato, cereal), to calibrate the ecosystem-level model FORECAST. Then, we simulated 150-year of land use for each site, emulating historical changes. Our estimates show that the conversion from forests into pastures and crops created C and N deficits (378-427 Mg C ha-1, 4.0-4.6 Mg N ha-1) from which these sites are still recovering. The main ecological process behind the creation of these deficits was the loss of the ecological legacy of soil organic matter (SOM) created by the forest, particularly during conversion to farming. Pastures were able to reverse, stop or at least slow down the loss of such legacy. In conclusion, our work shows the deep impact of historical land use in ecosystem attributes, both in magnitude of removed C and N stocks and in duration of such impact. Also, the usefulness of ecological modelling in absence of historical data to estimate such changes is showcased, providing a framework for potential C and N stocks to be reached by climate change mitigation measures such as forest restoration.
  • PublicationOpen Access
    CO2 fertilization plays a minor role in long-term carbon accumulation patterns in temperate pine forests in the southwestern Pyrenees
    (Elsevier, 2019) Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; González de Andrés, Ester; Imbert Rodríguez, Bosco; Castillo Martínez, Federico; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Isolating the long-term fertilization effect of CO 2 from other climate- and site-related effects on tree growth has been proven a challenging task. To isolate long-term effects of [CO2] on water use efficiency at ecosystem level, we used the FORECAST Climate forest model, calibrated for Scots pine (Pinus sylvestris L.) forests in the southwestern Pyrenees, growing at a Mediterranean montane site and at a continental subalpine site. Future climate scenarios (RCP 4.5 and RCP 8.5) were generated using a battery of six climate models to estimate daily values of temperature and precipitation in a 90-year series. A factorial experiment was designed to disentangle the importance on C pools of three growing limiting factors (nitrogen limitation, climate (temperature + precipitation) limitation and atmospheric CO 2 concentration). The relative importance of each factor was quantified by comparing the scenario with the limitation of each individual factor turned on with the non-limitation scenario. Positive CO 2 fertilization due to improvement in water use efficiency was detected by the model, but its quantitative impact improving tree growth was minimum: its average increase in ecosystem C pools ranged from 0.3 to 0.9%. At the site with cooler climate conditions (continental), the main limitation for tree growth was climate. Such limitation will be reduced under climate change and the ecosystem will store more carbon. At the site with milder climate conditions (Mediterranean), N availability was the main limiting factor albeit modulated by water availability. Such limitation could be reduced under climate change as N cycling could accelerate (higher litterfall production and decomposition rates) but also increase if droughts become more frequent and severe. In addition, the magnitude of the uncertainty related to climate model selection was much more important than CO 2 fertilization, indicating that atmospheric processes are more important than tree physiological processes when defining how much carbon could be gained (or lost) in forests under climate change. In conclusion, due to the small changes in forest C pools caused by variation of atmospheric CO 2 concentrations compared to changes caused by other growth limiting factors (nutrients, climate), reducing uncertainty related to climate projections seems a more efficient way to reduce uncertainty in tree growth projections than increasing forest model complexity.
  • PublicationOpen Access
    Maintaining ecosystem function by restoring forest biodiversity: reviewing decision-support tools that link biology, hydrology and geochemistry
    (InTech, 2015) Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; Welham, Clive; Wang, Mike; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Not all forest models are applicable to a meta-modelling approach. Hence, the objective of the research presented here was to identify and compare the available forest models already being used in research, and to evaluate their suitability for use as decision-support tools in designing successful restoration plans to bring forest biodiversity and function back to sites disturbed by industrial activities (mining in particular).
  • PublicationOpen Access
    Tree-to-tree competition in mixed European beech-Scots pine forests has different impacts on growth and water-use efficiency depending on site condition.
    (Wiley, 2018) González de Andrés, Ester; Camarero, Jesús Julio; Blanco Vaca, Juan Antonio; Imbert Rodríguez, Bosco; Lo, Yueh-Hsin; Sangüesa Barreda, G.; Castillo Martínez, Federico; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Mixed conifer-hardwood forests can be more productive than pure forests and they are increasingly considered as ecosystems that could provide adaptation strategies in the face of global change. However, the combined effects of tree-to-tree competition, rising atmospheric CO2 concentrations and climate on such mixtures remain poorly characterized and understood.2. To fill this research gap, we reconstructed 34-year series (1980-2013) of growth (basal area increment, BAI) and intrinsic water-use efficiency (iWUE) of Scots pine (Pinus sylvestris L.)-European beech (Fagus sylvatica L.) mixed stands at two climati-cally contrasting sites located in the southwestern Pyrenees. We also gathered data on tree-to-tree competition and climate variables in order to test the hypotheses that (1) radial growth will be greater when exposed to inter- than to intraspecific competition, that is, when species complementarity occurs and (2) enhanced iWUE could be linked to improved stem radial growth.3. Growth of both species was reduced when intraspecific competition increased. Species complementarity was linked to improved growth of Scots pine at the continental site, while competition overrode any complementarity advantage at the drought-prone Mediterranean site. Beech growth did not show any significant response to pine admixture likely due to shade tolerance and the highly competitive nature of this species. Increasing interspecific competition drove recent iWUE changes, which increased in Scots pine but decreased in European beech. The iWUE enhancement did not involve any growth improvement in Scots pine. However, the positive BAIiWUE relationship found for beech suggests an enhanced beech growth in drought-prone sites due to improved water use.4. Synthesis. Complementarity may enhance growth in mixed forests. However, water scarcity can constrict light-related complementarity for shade intolerant species (Scots pine) in drought-prone sites. Basal area increment-intrinsic water-use efficiency relationships were negative for Scots pine and positive for European beech. These contrasting behaviours have got implications for coping with the expected increasing drought events in Scots pine-European beech mixtures located near ecological limit of the two species. Complementarity effects between tree species should be considered to avoid overestimating the degree of future carbon uptake by mixed conifer¿broadleaf forests.
  • PublicationOpen Access
    Douglas-fir radial growth in interior British Columbia can be linked to long-term oscillations in Pacific and Atlantic sea surface temperatures
    (NCR Research Press, 2017) Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; Guan, Biing T.; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    A major problem in modern dendrochronology is that the methods traditionally used for linking tree ring growth data to climate records are not well suited to reconstructing low-frequency climatic variations. In this study, we explored the alternative Ensemble Empirical Mode Decomposition to detrend tree-ring records and to extract climate signals without removing low-frequency information. Tree cores of Pseudotsuga menziesii var. glauca (Mayr.) Franco were examined in a semi-arid forest in southern interior British Columbia, western Canada. Ring width data were decomposed into five oscillatory components (intrinsic mode functions, IMFs) of increasingly longer periodicities. IMF 1 was considered white noise, IMF 2 was used to create the first diameter growth index (DGI-1), IMF 3 and IMF 4 were combined to create the second diameter growth index (DGI-2), whereas IMF 5 and the residual term together were considered as the trend term. The highest significant cross-correlations between DGI-1 and the NAOAugust, NIÑO12May, and PDOJanuary indices were found at 1-year lags. DGI-2 had positive and persistent correlations with NAOJune and PDOMay at 0 to 3 years lags, and with NAOMay at 2 and 3 years lags. Our results indicate that periods of slow growth in the tree ring record matched periods of drought in the North American Pacific Northwest. Such water limiting conditions are likely caused by oscillatory patterns in the Pacific Ocean sea surface temperatures that influence precipitation in the Pacific Northwest. These drought events are likely exacerbated by changes in winter precipitation (snowpack) related to oscillations of the Atlantic Ocean sea surface temperatures, highlighting the ecological effects of both oceans on terrestrial ecosystems. Such relationships could not be easily found by traditional tree-ring analysis that remove some of the low-frequency signal, and therefore we suggest Ensemble Empirical Mode Decomposition as an additional tool to establishing tree growth-climate relationships.
  • PublicationOpen Access
    Productivity of forests ecoystems
    (Earthscan, 2017) Blanco Vaca, Juan Antonio; Lo, Yueh-Hsin; Welham, Clive; Larson, Bruce; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    In this chapter, we examine both the factors affecting forest ecosystem productivity, and the ways that forest management can influence these. Much forestry training is related to the manner in which productivity can be measured and monitored, but here we assume that readers have this basic level of training, and it is not further elaborated.
  • PublicationOpen Access
    Adaptive responses to thinning: growth and sensitivity to hydric and thermal stress in four widely planted pine species
    (Elsevier, 2025-10-15) Manrique-Alba, Àngela; Beguería, Santiago; Camarero, Jesús Julio; Molina, Antonio J.; Barberá, Gonzalo G.; Blanco Vaca, Juan Antonio; Cachinero Vivar, Antonio M.; Castillo, Víctor M.; Campo, Antonio D. del; Hernández, Álvaro; Imbert Rodríguez, Bosco; Jiménez, María N.; Lo, Yueh-Hsin; Lucas Borja, Manuel Esteban; Moreno, Gerardo; Navarro, Francisco B.; Navarro Cerrillo, Rafael M.; Ripoll, María Ángeles ; Sánchez-Miranda, Ángela; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB
    In seasonally dry areas, thinning has been proposed as a measure of adaptive forest management to enhance growth and increase drought resistance and resilience. However, long-term growth data on different tree species and site conditions remain scarce for investigating the interactions between thinning and climatic stressors. To fill that research gap, we examined radial growth and its sensitivity to climatic conditions in 19 experimental sites of the four most planted pine species in Spain (Pinus halepensis, P. pinaster, P. nigra, and P. sylvestris). We also assessed the influence of thinning at varying intensities on growth responsiveness to climate stress. To quantify how climate impacts growth, we used seasonal temperature and water balance anomalies expressed as temperature and drought indices. Thinning consistently enhanced tree growth for 8–20 years, with the magnitude of this effect modulated by hydric conditions. While drought reduced growth, wetter conditions promoted it—particularly in mesic species such as P. sylvestris and P. nigra. Importantly, thinning increased trees’ sensitivity to climate: thinned stands—especially those of P. halepensis and P. sylvestris—became more responsive to water availability, exhibiting stronger growth increases during wet years following thinning. Temperature also played a key role, with high spring and autumn temperature anomalies enhancing growth, comparable in magnitude to favorable hydric conditions. However, in the post-thinning period, spring temperature effects were lower than prior to thinning in species from xeric sites (P. halepensis and P. pinaster). High summer temperature anomalies negatively affected growth, though more weakly and only in species from xeric sites. Thinning, however, aggravated the negative effects of summer temperatures on growth in xeric sites and induced negative effects on growth in mesic sites. These findings highlight the species-specific interactions between thinning, water availability, and temperature stress, emphasizing the need for tailored, species- and site-specific adaptive management strategies of planted forests in response to climate change.
  • PublicationOpen Access
    Drought limits tree growth more than greenness and reproduction: insights from five case studies in Spain
    (KeAi Communications, 2025-08-01) Camarero, Jesús Julio; Rubio-Cuadrado, Álvaro; González de Andrés, Ester; Valeriano, Cristina; Pizarro, Manuel; Imbert Rodríguez, Bosco; Lo, Yueh-Hsin; Blanco Vaca, Juan Antonio; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Droughts impact forests by influencing various processes such as canopy greenness, tree growth, and reproduction, but most studies have only examined a few of these processes. More comprehensive assessments of forest responses to climate variability and water shortages are needed to improve forecasts of post-drought dynamics. Iberian forests are well-suited for evaluating these effects because they experience diverse climatic conditions and are dominated by various conifer and broadleaf species, many of which exhibit masting. We assessed how greenness, evaluated using the normalized difference vegetation index (NDVI), tree radial growth, and seed or cone production responded to drought in five tree species (three conifers: silver fir (Abies alba), Scots pine (Pinus sylvestris), and stone pine (Pinus pinea); two broadleaves: European beech (Fagus sylvatica) and holm oak (Quercus ilex) inhabiting sites with different aridity. We correlated these data with the standardized precipitation evapotranspiration index (SPEI) using the climate window analysis (climwin) package, which identifies the most relevant climate window. Drought constrained growth more than greenness and seed or cone production. Dry conditions led to high seed or cone production in species found in cool, moist sites (silver fir, beech, and Scots pine). We also found negative associations of cone production with summer SPEI in the drought-tolerant stone pine, which showed lagged growth−cone negative correlations. However, in the seasonally dry holm oak forests, severe droughts constrained both growth and acorn production, leading to a positive correlation between these variables. Drought impacts on greenness, growth, seed, and cone production depended on species phenology and site aridity. A negative correlation between growth and reproduction does not necessarily indicate trade-offs, as both may be influenced by similar climatic factors.