Aparicio Tejo, Pedro María

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Aparicio Tejo

First Name

Pedro María

person.page.departamento

Ciencias

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 7 of 7
  • PublicationOpen Access
    Plant ammonium sensitivity is associated with external pH adaptation, repertoire of nitrogen transporters, and nitrogen requirement
    (Oxford University Press, 2024-03-11) Rivero Marcos, Mikel; Lasa Larrea, Berta; Neves, Tomé; Zamarreño, Ángel M.; García Mina, José M.; García Olaverri, Carmen; Aparicio Tejo, Pedro María; Cruz, Cristina; Ariz Arnedo, Idoia; Ciencias; Zientziak; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Multidisciplinary Research in Applied Biology - IMAB; Institute for Advanced Research in Business and Economics - INARBE; Universidad Publica de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua
    Modern crops exhibit diverse sensitivities to ammonium as the primary nitrogen source, influenced by environmental factors such as external pH and nutrient availability. Despite its significance, there is currently no systematic classification of plant species based on their ammonium sensitivity. We conducted a meta-analysis of 50 plant species and present a new classification method based on the comparison of fresh biomass obtained under ammonium and nitrate nutrition. The classification uses the natural logarithm of the biomass ratio as the size effect indicator of ammonium sensitivity. This numerical parameter is associated with critical factors for nitrogen demand and form preference, such as Ellenberg indicators and the repertoire of nitrogen transporters for ammonium and nitrate uptake. Finally, a comparative analysis of the developmental and metabolic responses, including hormonal balance, is conducted in two species with divergent ammonium sensitivity values in the classification. Results indicate that nitrate has a key role in counteracting ammonium toxicity in species with a higher abundance of genes encoding NRT2-type proteins and fewer of those encoding the AMT2-type proteins. Additionally, the study demonstrates the reliability of the phytohormone balance and methylglyoxal content as indicators for anticipating ammonium toxicity. This study emphasizes the importance of ecophysiological requirements and the repertoire of nitrogen transporters in understanding plant sensitivity to ammonium, and enhances our knowledge of plant nitrogen nutrition.
  • PublicationOpen Access
    High irradiance increases NH4+ tolerance in Pisum sativum: higher carbon and energy availability improve ion balance but not N assimilation
    (Elsevier, 2011-03-02) Ariz Arnedo, Idoia; Artola Rezola, Ekhiñe; Asensio, Aarón C.; Cruchaga Moso, Saioa; Aparicio Tejo, Pedro María; Morán Juez, José Fernando; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Institute for Multidisciplinary Research in Applied Biology - IMAB
    The widespread use of NO3− fertilization has had a major ecological impact. NH4+ nutrition may help to reduce this impact, although high NH4+ concentrations are toxic for most plants. The underlying tolerance mechanisms are not yet fully understood, although they are thought to include the limitation of C, the disruption of ion homeostasis, and a wasteful NH4+ influx/efflux cycle that carries an extra energetic cost for root cells. In this study, high irradiance (HI) was found to induce a notable tolerance to NH4+ in the range 2.5–10 mM in pea plants by inducing higher C availability, as shown by carbohydrate content. This capacity was accompanied by a general lower relative N content, indicating that tolerance is not achieved through higher net N assimilation on C-skeletons, and it was also not attributable to increased GS content or activity in roots or leaves. Moreover, HI plants showed higher ATP content and respiration rates. This extra energy availability is related to the internal NH4+ content regulation (probably NH4+ influx/efflux) and to an improvement of the cell ionic balance. The limited C availability at lower irradiance (LI) and high NH4+ resulted in a series of metabolic imbalances, as reflected in a much higher organic acid content, thereby suggesting that the origin of the toxicity in plants cultured at high NH4+ and LI is related to their inability to avoid large-scale accumulation of the NH4+ ion.
  • PublicationOpen Access
    Depletion of the heaviest stable N isotope is associated with NH4+/NH3 toxicity in NH4+-fed plants
    (BioMed Central, 2011) Ariz Arnedo, Idoia; Cruz, Cristina; Morán Juez, José Fernando; González Moro, María Begoña; García Olaverri, Carmen; González Murua, Carmen; Martins Loucao, María A.; Aparicio Tejo, Pedro María; Estatistika eta Ikerketa Operatiboa; Estadística e Investigación Operativa; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Background: In plants, nitrate (NO3-) nutrition gives rise to a natural N isotopic signature (δ15N), which correlates with the δ15N of the N source. However, little is known about the relationship between the δ15N of the N source and the 14N/15N fractionation in plants under ammonium (NH4+) nutrition. When NH4 + is the major N source, the two forms, NH4 + and NH3, are present in the nutrient solution. There is a 1.025 thermodynamic isotope effect between NH3 (g) and NH4 + (aq) which drives to a different δ15N. Nine plant species with different NH4 +-sensitivities were cultured hydroponically with NO3 - or NH4 + as the sole N sources, and plant growth and δ15N were determined. Short-term NH4 +/NH3 uptake experiments at pH 6.0 and 9.0 (which favours NH3 form) were carried out in order to support and substantiate our hypothesis. N source fractionation throughout the whole plant was interpreted on the basis of the relative transport of NH4 + and NH3. Results: Several NO3 --fed plants were consistently enriched in 15N, whereas plants under NH4 + nutrition were depleted of 15N. It was shown that more sensitive plants to NH4 + toxicity were the most depleted in 15N. In parallel, N-deficient pea and spinach plants fed with 15NH4 + showed an increased level of NH3 uptake at alkaline pH that was related to the 15N depletion of the plant. Tolerant to NH4 + pea plants or sensitive spinach plants showed similar trend on 15N depletion while slight differences in the time kinetics were observed during the initial stages. The use of RbNO3 as control discarded that the differences observed arise from pH detrimental effects. Conclusions: This article proposes that the negative values of δ15N in NH4 +-fed plants are originated from NH3 uptake by plants. Moreover, this depletion of the heavier N isotope is proportional to the NH4 +/NH3 toxicity in plants species. Therefore, we hypothesise that the low affinity transport system for NH4 + may have two components: one that transports N in the molecular form and is associated with fractionation and another that transports N in the ionic form and is not associated with fractionation.
  • PublicationOpen Access
    Insights into the regulation of nitrogen fixation in pea nodules: lessons from drought, abscisic acid and increased photoassimilate availability
    (EDP Sciences, 2001) González García, Esther; Gálvez, Loli; Royuela Hernando, Mercedes; Aparicio Tejo, Pedro María; Arrese-Igor Sánchez, César; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Nitrogen fixation in legume nodules has been shown to be very sensitive to drought and other environmental constraints. It has been widely assumed that this decline in nitrogen fixation was a consequence of an increase in the so-called oxygen diffusion barrier and a subsequent impairment to bacteroid respiration. However, it has been recently shown that nitrogen fixation is highly correlated with nodule sucrose synthase (SS) activity under drought and other environmental stresses. Whether this correlation reflects a causative relationship or not has not been proven yet. The evidence presented here suggests that SS controls nitrogen fixation under mild drought conditions. However, nitrogen fixation cannot be enhanced only by increasing glycolytic flux, as under these conditions nodules become oxygen limited. Abscisic acid also induces a decline in nitrogen fixation that is independent of SS. The overall results suggest the occurrence of a complex regulation of nodule nitrogen fixation involving, at least, both carbohydrate and oxygen fluxes within the nodule.
  • PublicationOpen Access
    Overexpression of a pine Dof transcription factor in hybrid poplars: A comparative study in trees growing under controlled and natural conditions
    (Public Library of Science, 2017) Rueda López, Marina; Pascual, María Belén; Pallero, Mercedes; Henao, Luisa María; Lasa Larrea, Berta; Jáuregui Mosquera, Iván; Aparicio Tejo, Pedro María; Cánovas, Francisco M.; Ávila, Concepción; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    In this work, the role of the pine transcriptional regulator Dof 5 in carbon and nitrogen metabolism has been examined in poplar trees. The overexpression of the gene and potential effects on growth and biomass production were compared between trees growing in a growth chamber under controlled conditions and trees growing in a field trial during two growth seasons. Ten-week-old transgenic poplars exhibited higher growth than untransformed controls and exhibited enhanced capacity for inorganic nitrogen uptake in the form of nitrate. Furthermore, the transgenic trees accumulated significantly more carbohydrates such as glucose, fructose, sucrose and starch. Lignin content increased in the basal part of the stem likely due to the thicker stem of the transformed plants. The enhanced levels of lignin were correlated with higher expression of the PAL1 and GS1.3 genes, which encode key enzymes involved in the phenylalanine deamination required for lignin biosynthesis. However, the results in the field trial experiment diverged from those observed in the chamber system. The lines overexpressing PpDof5 showed attenuated growth during the two growing seasons and no modification of carbon or nitrogen metabolism. These results were not associated with a decrease in the expression of the transgene, but they can be ascribed to the nitrogen available in the field soil compared to that available for growth under controlled conditions. This work highlights the paramount importance of testing transgenic lines in field trials.
  • PublicationOpen Access
    Leaves play a central role in the adaptation of nitrogen and sulfur metabolism to ammonium nutrition in oilseed rape (Brassica napus)
    (BioMed Central, 2017) Coleto, Inmaculada; Peña, Marlon de la; Rodríguez Escalante, Jon; Bejarano, Iraide; Glauser, Gaëtan; Aparicio Tejo, Pedro María; González Moro, María Begoña; Marino Bilbao, Daniel; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Background: The coordination between nitrogen (N) and sulfur (S) assimilation is required to suitably provide plants with organic compounds essential for their development and growth. The N source induces the adaptation of many metabolic processes in plants; however, there is scarce information about the influence that it may exert on the functioning of S metabolism. The aim of this work was to provide an overview of N and S metabolism in oilseed rape (Brassica napus) when exposed to different N sources. To do so, plants were grown in hydroponic conditions with nitrate or ammonium as N source at two concentrations (0.5 and 1 mM). Results: Metabolic changes mainly occurred in leaves, where ammonium caused the up-regulation of enzymes involved in the primary assimilation of N and a general increase in the concentration of N-compounds (NH4 +, amino acids and proteins). Similarly, the activity of key enzymes of primary S assimilation and the content of S-compounds (glutathione and glucosinolates) were also higher in leaves of ammonium-fed plants. Interestingly, sulfate level was lower in leaves of ammonium-fed plants, which was accompanied by the down-regulation of SULTR1 transporters gene expression. Conclusions: The results highlight the impact of the N source on different steps of N and S metabolism in oilseed rape, notably inducing N and S assimilation in leaves, and put forward the potential of N source management to modulate the synthesis of compounds with biotechnological interest, such as glucosinolates.
  • PublicationOpen Access
    Improving the short‑term efficiency of rock phosphate‑based fertilizers in pastures by using edaphic biostimulants
    (Springer, 2016) Fernández, L.; Baigorri, R.; Urrutia Vera, Olaia; Erro, J.; Aparicio Tejo, Pedro María; Yvin, J. C.; García Mina, José M.; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua
    Background: The use of reactive rock phosphate (RP) in acidic soils as a phosphate (P) source for pastures and crops presents attractive economic advantages with respect to soluble phosphate. However, some studies have demonstrated that the short-term (1-year) efficiency of RP, compared with that of water-soluble P, is relatively poor. This fact penalizes not only the yield and quality of the earlier harvests, but even the whole final yield when the crop is affected by some abiotic or biotic stress at the beginning of the cycle. In the present study, we investigated the ability of new edaphic biostimulants to increase the short-term efficiency of RP-based fertilizer as a P source for pastures cultivated in acid soils. To this end, we have granulated rock phosphate with two edaphic biostimulants: tryptophan and a heteromolecular organic complex formed by humic acid and tryptophan through iron bridges, and compared their short-term P fertilizer efficacy with that of single superphosphate and rock phosphate. Results: Soil incubation studies showed that the heteromolecular complex humic acid–tryptophan and Tryptophan were able to increase soil CO2 production compared with native soil, rock phosphate, and superphosphate. Likewise, the presence of humic acid–tryptophan complex and Trp significantly increases plant-available phosphate compared with rock phosphate, up to levels similar to those of superphosphate. Plant (ray grass)–soil–pot studies showed that rock phosphate/(humic acid–tryptophan) formulation yielded values for both ray grass dry matter production and shoot P concentration, clearly higher than those of rock phosphate and rock phosphate/tryptophan. In addition, the results associated with rock phosphate/(humic acid–tryptophan) were similar to those for superphosphate, after 3 months of cultivation. Conclusions: Taken together, these results showed the suitability of the use of specific humic acid-based edaphic biostimulants to improve the short-term effect of rock phosphate fertilizers as a phosphate source for pastures cultivated in acid soils.