Aparicio Tejo, Pedro María

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Aparicio Tejo

First Name

Pedro María

person.page.departamento

Ciencias

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 34
  • PublicationOpen Access
    Isotopic composition of maize as related to N-fertilization and irrigation in the Mediterranean region
    (Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 2011) Lasa Larrea, Berta; Irañeta, Iosu; Muro Erreguerena, Julio; Irigoyen Iriarte, Ignacio; Aparicio Tejo, Pedro María; Natura Ingurunearen Zientziak; Nekazaritza Ekoizpena; Ciencias del Medio Natural; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua, 17/2004
    Nitrate leaching as a result of excessive application of N-fertilizers and water use is a major problem of vulnerable regions. The farming of maize requires high N fertilization and water inputs in Spain. Isotopic techniques may provide information on the processes involved in the N and C cycles in farmed areas. The aim of this work was studying the impact of sprinkler and furrow irrigation and N input on maize (Zea mays L.) yields, and whether isotopic composition can be used as indicator of best farming practices. Trials were set up in Tudela (Spain) with three rates of N fertilization (0, 240 and 320 kg urea-N ha–1) and two irrigation systems (furrow and sprinkler). Yield, nitrogen content, irrigation parameters, N fate and C and N isotope composition were determined. The rate of N fertilization required to obtain the same yield is considerably higher under furrow irrigation, since the crop has less N at its disposal in furrow irrigation as a result of higher loss of nitrogen by NO3 –-N leaching and denitrification. A lower δ13C in plants under furrow irrigation was recorded.The δ15N value of plant increased with the application rate of N under furrow irrigation.
  • PublicationOpen Access
    Soil moisture modulates biological nitrification inhibitors release in sorghum plants
    (Springer, 2023) Bozal-Leorri, Adrián; Arregui Odériz, Luis Miguel; Torralbo, Fernando; González Moro, María Begoña; González Murua, Carmen; Aparicio Tejo, Pedro María; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Background and aims: Sorghum (Sorghum bicolor) is able to exude allelochemicals with biological nitrifcation inhibition (BNI) capacity. Therefore, sorghum might be an option as cover crop since its BNI ability may reduce N pollution in the following crop due to a decreased nitrifcation. However, BNI exudation is related to the physiological state and development of the plant, so abiotic stresses such as drought might modify the rate of BNI exudation. Hence, the objective was to determine the efect of drought stress on sorghum plants’ BNI release. Methods: The residual efects of sorghum crops over ammonia-oxidizing bacteria (AOB) were monitored in a 3-year feld experiment. In a controlled-conditions experiment, sorghum plants were grown under Watered (60% WFPS) or Moderate drought (30% WFPS) conditions, and fertilized with ammonium sulphate (A), ammonium sulphate+DMPP (A+D), or potassium nitrate (KNO3 −). Soil mineral N was determined, and AOB populations were quantifed. Additionally, plant biomass, isotopic discrimination of N and C, and photosynthetic parameters were measured in sorghum plants. Results: In the driest year, sorghum was able to reduce the AOB relative abundance by 50% at feld conditions. In the plant-soil microcosm, drought stress reduced leaf photosynthetic parameters, which had an impact on plant biomass. Under these conditions, sorghum plants exposed to Moderate drought reduced the AOB abundance of A treatment by 25% compared to Watered treatment. Conclusion: The release of BNI by sorghum under limited water conditions might ensure high soil NH4 +-N pool for crop uptake due to a reduction of nitrifying microorganisms.
  • PublicationOpen Access
    Expression and localization of a Rhizobium-derived cambialistic superoxide dismutase in pea (Pisum sativum) nodules subjected to oxidative stress
    (The American Phytopathological Society, 2011-09-07) Asensio, Aarón C.; Marino Bilbao, Daniel; James, Euan K.; Ariz Arnedo, Idoia; Arrese-Igor Sánchez, César; Aparicio Tejo, Pedro María; Arredondo-Peter, Raúl; Morán Juez, José Fernando; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Two phylogenetically unrelated superoxide dismutase (SOD) families, i.e., CuZnSOD (copper and zinc SOD) and FeMn-CamSOD (iron, manganese, or cambialistic SOD), eliminate superoxide radicals in different locations within the plant cell. CuZnSOD are located within the cytosol and plastids, while the second family of SOD, which are considered to be of bacterial origin, are usually located within organelles, such as mitochondria. We have used the reactive oxygen species¿producer methylviologen (MV) to study SOD isozymes in the indeterminate nodules on pea (Pisum sativum). MV caused severe effects on nodule physiology and structure and also resulted in an increase in SOD activity. Purification and N-terminal analysis identified CamSOD from the Rhizobium leguminosarum endosymbiont as one of the most active SOD in response to the oxidative stress. Fractionation of cell extracts and immunogold labeling confirmed that the CamSOD was present in both the bacteroids and the cytosol (including the nuclei, plastids, and mitochondria) of the N-fixing cells, and also within the uninfected cortical and interstitial cells. These findings, together with previous reports of the occurrence of FeSOD in determinate nodules, indicate that FeMnCamSOD have specific functions in legumes, some of which may be related to signaling between plant and bacterial symbionts, but the occurrence of one or more particular isozymes depends upon the nodule type.
  • PublicationOpen Access
    Overexpression of a pine Dof transcription factor in hybrid poplars: A comparative study in trees growing under controlled and natural conditions
    (Public Library of Science, 2017) Rueda López, Marina; Pascual, María Belén; Pallero, Mercedes; Henao, Luisa María; Lasa Larrea, Berta; Jáuregui Mosquera, Iván; Aparicio Tejo, Pedro María; Cánovas, Francisco M.; Ávila, Concepción; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    In this work, the role of the pine transcriptional regulator Dof 5 in carbon and nitrogen metabolism has been examined in poplar trees. The overexpression of the gene and potential effects on growth and biomass production were compared between trees growing in a growth chamber under controlled conditions and trees growing in a field trial during two growth seasons. Ten-week-old transgenic poplars exhibited higher growth than untransformed controls and exhibited enhanced capacity for inorganic nitrogen uptake in the form of nitrate. Furthermore, the transgenic trees accumulated significantly more carbohydrates such as glucose, fructose, sucrose and starch. Lignin content increased in the basal part of the stem likely due to the thicker stem of the transformed plants. The enhanced levels of lignin were correlated with higher expression of the PAL1 and GS1.3 genes, which encode key enzymes involved in the phenylalanine deamination required for lignin biosynthesis. However, the results in the field trial experiment diverged from those observed in the chamber system. The lines overexpressing PpDof5 showed attenuated growth during the two growing seasons and no modification of carbon or nitrogen metabolism. These results were not associated with a decrease in the expression of the transgene, but they can be ascribed to the nitrogen available in the field soil compared to that available for growth under controlled conditions. This work highlights the paramount importance of testing transgenic lines in field trials.
  • PublicationOpen Access
    Insights into the regulation of nitrogen fixation in pea nodules: lessons from drought, abscisic acid and increased photoassimilate availability
    (EDP Sciences, 2001) González García, Esther; Gálvez, Loli; Royuela Hernando, Mercedes; Aparicio Tejo, Pedro María; Arrese-Igor Sánchez, César; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Nitrogen fixation in legume nodules has been shown to be very sensitive to drought and other environmental constraints. It has been widely assumed that this decline in nitrogen fixation was a consequence of an increase in the so-called oxygen diffusion barrier and a subsequent impairment to bacteroid respiration. However, it has been recently shown that nitrogen fixation is highly correlated with nodule sucrose synthase (SS) activity under drought and other environmental stresses. Whether this correlation reflects a causative relationship or not has not been proven yet. The evidence presented here suggests that SS controls nitrogen fixation under mild drought conditions. However, nitrogen fixation cannot be enhanced only by increasing glycolytic flux, as under these conditions nodules become oxygen limited. Abscisic acid also induces a decline in nitrogen fixation that is independent of SS. The overall results suggest the occurrence of a complex regulation of nodule nitrogen fixation involving, at least, both carbohydrate and oxygen fluxes within the nodule.
  • PublicationOpen Access
    Depletion of the heaviest stable N isotope is associated with NH4+/NH3 toxicity in NH4+-fed plants
    (BioMed Central, 2011) Ariz Arnedo, Idoia; Cruz, Cristina; Morán Juez, José Fernando; González Moro, María Begoña; García Olaverri, Carmen; González Murua, Carmen; Martins Loucao, María A.; Aparicio Tejo, Pedro María; Estatistika eta Ikerketa Operatiboa; Estadística e Investigación Operativa; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Background: In plants, nitrate (NO3-) nutrition gives rise to a natural N isotopic signature (δ15N), which correlates with the δ15N of the N source. However, little is known about the relationship between the δ15N of the N source and the 14N/15N fractionation in plants under ammonium (NH4+) nutrition. When NH4 + is the major N source, the two forms, NH4 + and NH3, are present in the nutrient solution. There is a 1.025 thermodynamic isotope effect between NH3 (g) and NH4 + (aq) which drives to a different δ15N. Nine plant species with different NH4 +-sensitivities were cultured hydroponically with NO3 - or NH4 + as the sole N sources, and plant growth and δ15N were determined. Short-term NH4 +/NH3 uptake experiments at pH 6.0 and 9.0 (which favours NH3 form) were carried out in order to support and substantiate our hypothesis. N source fractionation throughout the whole plant was interpreted on the basis of the relative transport of NH4 + and NH3. Results: Several NO3 --fed plants were consistently enriched in 15N, whereas plants under NH4 + nutrition were depleted of 15N. It was shown that more sensitive plants to NH4 + toxicity were the most depleted in 15N. In parallel, N-deficient pea and spinach plants fed with 15NH4 + showed an increased level of NH3 uptake at alkaline pH that was related to the 15N depletion of the plant. Tolerant to NH4 + pea plants or sensitive spinach plants showed similar trend on 15N depletion while slight differences in the time kinetics were observed during the initial stages. The use of RbNO3 as control discarded that the differences observed arise from pH detrimental effects. Conclusions: This article proposes that the negative values of δ15N in NH4 +-fed plants are originated from NH3 uptake by plants. Moreover, this depletion of the heavier N isotope is proportional to the NH4 +/NH3 toxicity in plants species. Therefore, we hypothesise that the low affinity transport system for NH4 + may have two components: one that transports N in the molecular form and is associated with fractionation and another that transports N in the ionic form and is not associated with fractionation.
  • PublicationOpen Access
    Effect of N-(n-butyl) thiophosphoric triamide on urea metabolism and the assimilation of ammonium by Triticum aestivum L.
    (Springer, 2010-08-25) Artola Rezola, Ekhiñe; Cruchaga Moso, Saioa; Ariz Arnedo, Idoia; Morán Juez, José Fernando; Garnica, María; Houdusse, Fabrice; García Mina, José M.; Irigoyen Iriarte, Ignacio; Lasa Larrea, Berta; Aparicio Tejo, Pedro María; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Producción Agraria; Nekazaritza Ekoizpena
    The use of urea as an N fertilizer has increased to such an extent that it is now the most widely used fertilizer in the world. However, N losses as a result of ammonia volatilization lead to a decrease in its efficiency, therefore different methods have been developed over the years to reduce these losses. One of the most recent involves the use of urea combined with urease inhibitors, such as N-(n-butyl) thiophosphoric triamide (NBPT), in an attempt to delay the hydrolysis of urea in the soil. The aim of this study is to perform an in-depth analysis of the effects that NBPT use has on plant growth and N metabolism. Wheat plants were cultivated in a greenhouse experiment lasting four weeks and fertilized with urea and NBPT at different concentrations (0, 0.012, 0.062, 0.125%). Each treatment was replicated six times. A non-fertilized control was also cultivated. Several parameters related with N metabolism were analysed at harvest. NBPT use was found to have visible effects, such as a transitory yellowing of the leaf tips, at the end of the first week of treatment. At a metabolic level, plants treated with the inhibitor were found to have more urea in their tissues and a lower amino acid content, lower glutamine synthetase activity, and lower urease and glutamine synthetase content at the end of the study period, whereas their urease activity seemed to have recovered by this stage.
  • PublicationOpen Access
    Leaves play a central role in the adaptation of nitrogen and sulfur metabolism to ammonium nutrition in oilseed rape (Brassica napus)
    (BioMed Central, 2017) Coleto, Inmaculada; Peña, Marlon de la; Rodríguez Escalante, Jon; Bejarano, Iraide; Glauser, Gaëtan; Aparicio Tejo, Pedro María; González Moro, María Begoña; Marino Bilbao, Daniel; Ciencias del Medio Natural; Natura Ingurunearen Zientziak
    Background: The coordination between nitrogen (N) and sulfur (S) assimilation is required to suitably provide plants with organic compounds essential for their development and growth. The N source induces the adaptation of many metabolic processes in plants; however, there is scarce information about the influence that it may exert on the functioning of S metabolism. The aim of this work was to provide an overview of N and S metabolism in oilseed rape (Brassica napus) when exposed to different N sources. To do so, plants were grown in hydroponic conditions with nitrate or ammonium as N source at two concentrations (0.5 and 1 mM). Results: Metabolic changes mainly occurred in leaves, where ammonium caused the up-regulation of enzymes involved in the primary assimilation of N and a general increase in the concentration of N-compounds (NH4 +, amino acids and proteins). Similarly, the activity of key enzymes of primary S assimilation and the content of S-compounds (glutathione and glucosinolates) were also higher in leaves of ammonium-fed plants. Interestingly, sulfate level was lower in leaves of ammonium-fed plants, which was accompanied by the down-regulation of SULTR1 transporters gene expression. Conclusions: The results highlight the impact of the N source on different steps of N and S metabolism in oilseed rape, notably inducing N and S assimilation in leaves, and put forward the potential of N source management to modulate the synthesis of compounds with biotechnological interest, such as glucosinolates.
  • PublicationOpen Access
    Improving the short‑term efficiency of rock phosphate‑based fertilizers in pastures by using edaphic biostimulants
    (Springer, 2016) Fernández, L.; Baigorri, R.; Urrutia Vera, Olaia; Erro, J.; Aparicio Tejo, Pedro María; Yvin, J. C.; García Mina, José M.; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua
    Background: The use of reactive rock phosphate (RP) in acidic soils as a phosphate (P) source for pastures and crops presents attractive economic advantages with respect to soluble phosphate. However, some studies have demonstrated that the short-term (1-year) efficiency of RP, compared with that of water-soluble P, is relatively poor. This fact penalizes not only the yield and quality of the earlier harvests, but even the whole final yield when the crop is affected by some abiotic or biotic stress at the beginning of the cycle. In the present study, we investigated the ability of new edaphic biostimulants to increase the short-term efficiency of RP-based fertilizer as a P source for pastures cultivated in acid soils. To this end, we have granulated rock phosphate with two edaphic biostimulants: tryptophan and a heteromolecular organic complex formed by humic acid and tryptophan through iron bridges, and compared their short-term P fertilizer efficacy with that of single superphosphate and rock phosphate. Results: Soil incubation studies showed that the heteromolecular complex humic acid–tryptophan and Tryptophan were able to increase soil CO2 production compared with native soil, rock phosphate, and superphosphate. Likewise, the presence of humic acid–tryptophan complex and Trp significantly increases plant-available phosphate compared with rock phosphate, up to levels similar to those of superphosphate. Plant (ray grass)–soil–pot studies showed that rock phosphate/(humic acid–tryptophan) formulation yielded values for both ray grass dry matter production and shoot P concentration, clearly higher than those of rock phosphate and rock phosphate/tryptophan. In addition, the results associated with rock phosphate/(humic acid–tryptophan) were similar to those for superphosphate, after 3 months of cultivation. Conclusions: Taken together, these results showed the suitability of the use of specific humic acid-based edaphic biostimulants to improve the short-term effect of rock phosphate fertilizers as a phosphate source for pastures cultivated in acid soils.
  • PublicationOpen Access
    Elevated CO2 improved the growth of a double nitrate reductase defective mutant of Arabidopsis thaliana: the importance of maintaining a high energy status
    (Elsevier, 2017) Jáuregui Mosquera, Iván; Aparicio Tejo, Pedro María; Baroja Fernández, Edurne; Ávila, Concepción; Aranjuelo Michelena, Iker; Natura Ingurunearen Zientziak; Ciencias del Medio Natural; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Impairments in leaf nitrogen (N) assimilation in C3 plants have been identified as processes conditioning photosynthesis under elevated [CO2], especially when N is supplied as nitrate. Leaf N status is usually improved under ammonium nutrition and elevated [CO2]. However, ammonium fertilization is usually accompanied by the appearance of oxidative stress symptoms, which constrains plant development. To understand how the limitations of direct fertilization with ammonium (growth reduction attributed to ammonium toxicity) can be overcome, the effects of elevated [CO2] (800 ppm) exposure were studied in the Arabidopsis thaliana double nitrate reductase defective mutant, nia1-1/chl3-5 (which preferentially assimilates ammonium as its nitrogen source). Analysis of the physiology, metabolites and gene expression was carried out in roots and shoot organs. Our study clearly showed that elevated [CO2] improved the inhibited phenotype of the nitrate reductase double mutant. Both the photosynthetic rates and the leaf N content of the NR mutant under elevated CO2 were similar to wild type plants. The growth of the nitrate reductase mutant was linked to its ability to overcome ammonium-associated photoinhibition processes at 800 ppm [CO2]. More specifically: (i) the capacity of NR mutants to equilibrate energy availability, as reflected by the electron transport equilibrium reached (photosynthesis, photorespiration and respiration), (ii) as well as by the upregulation of genes involved in stress tolerance were identified as the processes involved in the improved performance of NR mutants.