Aparicio Tejo, Pedro María

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Aparicio Tejo

First Name

Pedro María

person.page.departamento

Ciencias

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 1 of 1
  • PublicationOpen Access
    Unravelling the mechanisms that improve photosynthetic performance of N₂-fixing pea plants exposed to elevated [CO₂]
    (Elsevier, 2014) Aranjuelo Michelena, Iker; Cabrerizo Geijo, Pablo María; Aparicio Tejo, Pedro María; Arrese-Igor Sánchez, César; Natura Ingurunearen Zientziak; Ciencias del Medio Natural; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Although the predicted enhanced photosynthetic rates of plants exposed to elevated [CO₂] are expected to increase carbohydrate and plant growth, recent findings have shown a complex regulation of these processes. The aim of this study was to determine the effect of elevated [CO₂] on pathways leading to the main forms of leaf C storage (starch) and export (sucrose) and the implications of this increased [CO₂] on photosynthetic performance of exclusively N2 fixing plants. For this purpose, exclusively N2-fixing pea plants were exposed to elevated [CO₂] (1000 mol mol−1 versus 360 mol mol−1 CO₂). The data obtained highlighted that plants exposed to elevated [CO₂] were capable of maintaining hexose levels (involved in Rubisco down regulation) at control levels with the consequent avoidance of photosynthetic acclimation. More specifically, in plants exposed to elevated [CO₂] there was an increase in the activity of pathways involved in the main forms of leaf C storage (starch) and export (sucrose). Furthermore, the study highlighted that although starch content increased by up to 40% under elevated [CO₂], there was also an increase in the proteins and compounds involved in starch degradation. Such a finding, together with an increase in the activity of proteins involved in sucrose synthesis revealed that these plants up-regulated the sucrose synthesis pathway in order to meet the large nodule photoassimilate requirements. As a consequence, the study highlighted the relevance of controlling the activity of pathways that determine leaf cellular carbohydrate availability and how this is linked with C-demanding organs such as nodules.