Bustince Sola, Humberto

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Bustince Sola

First Name

Humberto

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    A first study on the use of interval-valued fuzzy sets with genetic tuning for classification with imbalanced data sets
    (Springer, 2009) Sanz Delgado, José Antonio; Fernández, Alberto; Bustince Sola, Humberto; Herrera, Francisco; Automática y Computación; Automatika eta Konputazioa
    Classification with imbalanced data-sets is one of the recent challenging problems in Data Mining. In this framework, the class dis- tribution is not uniform and the separability between the classes is often difficult. From the available techniques in the Machine Learning field, we focus on the use of Fuzzy Rule Based Classification Systems, as they provide an interpretable model for the end user by means of linguistic variables. The aim of this work is to increase the performance of fuzzy modeling by adding a higher degree of knowledge by means of the use of Interval- valued Fuzzy Sets. Furthermore, we will contextualize the Interval-valued Fuzzy Sets with a post-processing genetic tuning of the amplitude of their upper bounds in order to enhance the global behaviour of this methodology.
  • PublicationOpen Access
    Improving the performance of fuzzy rule-based classification systems with interval-valued fuzzy sets and genetic amplitude tuning
    (Elsevier, 2010) Sanz Delgado, José Antonio; Fernández, Alberto; Bustince Sola, Humberto; Herrera, Francisco; Automática y Computación; Automatika eta Konputazioa
    Among the computational intelligence techniques employed to solve classification problems, Fuzzy Rule-Based Classification Systems (FRBCSs) are a popular tool because of their interpretable models based on linguistic variables, which are easier to understand for the experts or end-users. The aim of this paper is to enhance the performance of FRBCSs by extending the Knowledge Base with the application of the concept of Interval-Valued Fuzzy Sets (IVFSs). We consider a post-processing genetic tuning step that adjusts the amplitude of the upper bound of the IVFS to contextualize the fuzzy partitions and to obtain a most accurate solution to the problem. We analyze the goodness of this approach using two basic and well-known fuzzy rule learning algorithms, the Chi et al.’s method and the fuzzy hybrid genetics-based machine learning algorithm. We show the improvement achieved by this model through an extensive empirical study with a large collection of data-sets.
  • PublicationOpen Access
    A proposal for tuning the α parameter in CαC-integrals for application in fuzzy rule-based classification systems
    (Springer, 2020) Lucca, Giancarlo; Sanz Delgado, José Antonio; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    In this paper, we consider the concept of extended Choquet integral generalized by a copula, called CC-integral. In particular, we adopt a CC-integral that uses a copula defined by a parameter α, which behavior was tested in a previous work using different fixed values. In this contribution, we propose an extension of this method by learning the best value for the parameter α using a genetic algorithm. This new proposal is applied in the fuzzy reasoning method of fuzzy rule-based classification systems in such a way that, for each class, the most suitable value of the parameter α is obtained, which can lead to an improvement on the system's performance. In the experimental study, we test the performance of 4 different so called CαC-integrals, comparing the results obtained when using fixed values for the parameter α against the results provided by our new evolutionary approach. From the obtained results, it is possible to conclude that the genetic learning of the parameter α is statistically superior than the fixed one for two copulas. Moreover, in general, the accuracy achieved in test is superior than that of the fixed approach in all functions. We also compare the quality of this approach with related approaches, showing that the methodology proposed in this work provides competitive results. Therefore, we demonstrate that CαC-integrals with α learned genetically can be considered as a good alternative to be used in fuzzy rule-based classification systems.
  • PublicationOpen Access
    A genetic tuning to improve the performance of fuzzy rule-based classification systems with interval-valued fuzzy sets: degree of ignorance and lateral position
    (Elsevier, 2011) Sanz Delgado, José Antonio; Fernández, Alberto; Bustince Sola, Humberto; Herrera, Francisco; Automática y Computación; Automatika eta Konputazioa
    Fuzzy Rule-Based Systems are appropriate tools to deal with classification problems due to their good properties. However, they can suffer a lack of system accuracy as a result of the uncertainty inherent in the definition of the membership functions and the limitation of the homogeneous distribution of the linguistic labels. The aim of the paper is to improve the performance of Fuzzy Rule-Based Classification Systems by means of the Theory of Interval-Valued Fuzzy Sets and a post-processing genetic tuning step. In order to build the Interval-Valued Fuzzy Sets we define a new function called weak ignorance for modeling the uncertainty associated with the definition of the membership functions. Next, we adapt the fuzzy partitions to the problem in an optimal way through a cooperative evolutionary tuning in which we handle both the degree of ignorance and the lateral position (based on the 2-tuples fuzzy linguistic representation) of the linguistic labels. The experimental study is carried out over a large collection of data-sets and it is supported by a statistical analysis. Our results show empirically that the use of our methodology outperforms the initial Fuzzy-Rule Based Classification System. The application of our cooperative tuning enhances the results provided by the use of the isolated tuning approaches and also improves the behavior of the genetic tuning based on the 3-tuples fuzzy linguistic representation.