Publication:
A first study on the use of interval-valued fuzzy sets with genetic tuning for classification with imbalanced data sets

Date

2009

Authors

Fernández, Alberto
Herrera, Francisco

Director

Publisher

Springer
Acceso abierto / Sarbide irekia
Contribución a congreso / Biltzarrerako ekarpena
Versión aceptada / Onetsi den bertsioa

Project identifier

MEC//TIN2007-65981/ES/recolecta
MICINN//TIN2008-06681-C06-01/ES/recolecta
Impacto
OpenAlexGoogle Scholar
cited by count

Abstract

Classification with imbalanced data-sets is one of the recent challenging problems in Data Mining. In this framework, the class dis- tribution is not uniform and the separability between the classes is often difficult. From the available techniques in the Machine Learning field, we focus on the use of Fuzzy Rule Based Classification Systems, as they provide an interpretable model for the end user by means of linguistic variables. The aim of this work is to increase the performance of fuzzy modeling by adding a higher degree of knowledge by means of the use of Interval- valued Fuzzy Sets. Furthermore, we will contextualize the Interval-valued Fuzzy Sets with a post-processing genetic tuning of the amplitude of their upper bounds in order to enhance the global behaviour of this methodology.

Description

Keywords

Fuzzy rule-based classification systems, Interval-valued fuzzy sets, Tuning, Genetic algorithms, Imbalanced data-sets

Department

Automática y Computación / Automatika eta Konputazioa

Faculty/School

Degree

Doctorate program

item.page.cita

Sanz, J., Fernández, A., Bustince, H., & Herrera, F. (2009). A first study on the use of interval-valued fuzzy sets with genetic tuning for classification with imbalanced data-sets. En E. Corchado, X. Wu, E. Oja, Á. Herrero, & B. Baruque (Eds.), Hybrid Artificial Intelligence Systems (Vol. 5572, pp. 581-588). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-02319-4_70

item.page.rights

© Springer-Verlag Berlin Heidelberg 2009

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.