Bustince Sola, Humberto

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Bustince Sola

First Name

Humberto

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 7 of 7
  • PublicationOpen Access
    Admissible OWA operators for fuzzy numbers
    (Elsevier, 2024) García-Zamora, Diego; Cruz, Anderson; Neres, Fernando; Santiago, Regivan; Roldán López de Hierro, Antonio Francisco; Paiva, Rui; Pereira Dimuro, Graçaliz; Martínez López, Luis; Bedregal, Benjamin; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    Ordered Weighted Averaging (OWA) operators are some of the most widely used aggregation functions in classic literature, but their application to fuzzy numbers has been limited due to the complexity of defining a total order in fuzzy contexts. However, the recent notion of admissible order for fuzzy numbers provides an effective method to totally order them by refining a given partial order. Therefore, this paper is devoted to defining OWA operators for fuzzy numbers with respect to admissible orders and investigating their properties. Firstly, we define the OWA operators associated with such admissible orders and then we show their main properties. Afterward, an example is presented to illustrate the applicability of these AOWA operators in linguistic decision-making. In this regard, we also develop an admissible order for trapezoidal fuzzy numbers that can be efficiently applied in practice.
  • PublicationEmbargo
    Non-symmetric over-time pooling using pseudo-grouping functions for convolutional neural networks
    (Elsevier, 2024-07-01) Ferrero Jaurrieta, Mikel; Paiva, Rui; Cruz, Anderson; Bedregal, Benjamin; Miguel Turullols, Laura de; Takáč, Zdenko; López Molina, Carlos; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    Convolutional Neural Networks (CNNs) are a family of networks that have become state-of-the-art in several fields of artificial intelligence due to their ability to extract spatial features. In the context of natural language processing, they can be used to build text classification models based on textual features between words. These networks fuse local features to generate global features in their over-time pooling layers. These layers have been traditionally built using the maximum function or other symmetric functions such as the arithmetic mean. It is important to note that the order of input local features is significant (i.e. the symmetry is not an inherent characteristic of the model). While this characteristic is appropriate for image-oriented CNNs, where symmetry might make the network robust to image rigid transformations, it seems counter-productive for text processing, where the order of the words is certainly important. Our proposal is, hence, to use non-symmetric pooling operators to replace the maximum or average functions. Specifically, we propose to perform over-time pooling using pseudo-grouping functions, a family of non-symmetric aggregation operators that generalize the maximum function. We present a construction method for pseudo-grouping functions and apply different examples of this family to over-time pooling layers in text-oriented CNNs. Our proposal is tested on seven different models and six different datasets in the context of engineering applications, e.g. text classification. The results show an overall improvement of the models when using non-symmetric pseudo-grouping functions over the traditional pooling function.
  • PublicationOpen Access
    Reduction of complexity using generators of pseudo-overlap and pseudo-grouping functions
    (2024) Ferrero Jaurrieta, Mikel; Paiva, Rui; Cruz, Anderson; Bedregal, Benjamin; Zhang, Xiaohong; Takáč, Zdenko; López Molina, Carlos; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Overlap and grouping functions can be used to measure events in which we must consider either the maximum or the minimum lack of knowledge. The commutativity of overlap and grouping functions can be dropped out to introduce the notions of pseudo-overlap and pseudo-grouping functions, respectively. These functions can be applied in problems where distinct orders of their arguments yield different values, i.e., in non-symmetric contexts. Intending to reduce the complexity of pseudo-overlap and pseudo-grouping functions, we propose new construction methods for these functions from generalized concepts of additive and multiplicative generators. We investigate the isomorphism between these families of functions. Finally, we apply these functions in an illustrative problem using them in a time series prediction combined model using the IOWA operator to evidence that using these generators and functions implies better performance.
  • PublicationEmbargo
    Fuzzy dissimilarities and the fuzzy choquet integral of triangular fuzzy numbers on [0,1]
    (Elsevier, 2025-04-01) Roldán López de Hierro, Antonio Francisco; Cruz, Anderson; Santiago, Regivan; Roldán, Concepción; García-Zamora, Diego; Neres, Fernando; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    Having in mind the huge amount of data daily registered in the world, it is becoming increasingly important to summarize the information included in a data set. In Statistics and Computer Science, this task is successfully carried out by aggregation functions. One of the most widely applied methodologies of aggregating data is the Choquet integral. The main aim of this paper is to introduce an appropriate notion of Choquet integral in the context of fuzzy numbers. To do this, we face three challenges: the underlying uncertainty when handling fuzzy numbers, the way to order fuzzy numbers by appropriate binary relations and the way to compute the dissimilarity among fuzzy numbers. Illustrative examples are given by involving the α-order on the family of all triangular fuzzy numbers with support on [0,1].
  • PublicationEmbargo
    From type-(2,k) grouping indices to type-(2,k) Jaccard indices
    (Elsevier, 2025-02-01) Roldán López de Hierro, Antonio Francisco; Roldán, Concepción; Guerra Errea, Carlos; Fernández Fernández, Francisco Javier; Cruz, Anderson; Moraes, Ronei Marcos de; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    In this work, we introduce the notion of grouping index for type-2 fuzzy sets as a measure of how far the union of two type-2 fuzzy sets over the same universe is from the total universe. We also show how we can extend the notion of the Jaccard index to the type-2 setting by means of type-2 grouping and overlap indexes.
  • PublicationOpen Access
    Additively generated (a,b)-implication functions*
    (IEEE, 2023) Santos, Helida; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Paiva, Rui; Lucca, Giancarlo; Moura, Bruno; Cruz, Anderson; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Some problems involving classification through neural networks are known to use inputs out of the scope of the unit interval. Therefore, defining operations on arbitrary closed real intervals may be an interesting strategy to tackle this issue and enhance those application environments. In this paper we follow the ideas already discussed in the literature regarding (a,b)-fusion functions, and (a,b)-negations, to provide a new way to construct implication functions. The main idea is to construct an operator using additively generated functions that preserve the properties required by implication functions.
  • PublicationOpen Access
    Some construction methods for pseudo-overlaps and pseudo-groupings and their application in group decision making
    (MDPI, 2023) García-Zamora, Diego; Paiva, Rui; Cruz, Anderson; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    In many real-world scenarios, the importance of different factors may vary, making commutativity an unreasonable assumption for aggregation functions, such as overlaps or groupings. To address this issue, researchers have introduced pseudo-overlaps and pseudo-groupings as their corresponding non-commutative generalizations. In this paper, we explore various construction methods for obtaining pseudo-overlaps and pseudo-groupings using overlaps, groupings, fuzzy negations, convex sums, and Riemannian integration. We then show the applicability of these construction methods in a multi-criteria group decision-making problem, where the importance of both the considered criteria and the experts vary. Our results highlight the usefulness of pseudo-overlaps and pseudo-groupings as a non-commutative alternative to overlaps and groupings.