Reduction of complexity using generators of pseudo-overlap and pseudo-grouping functions

Date

2024

Authors

Director

Publisher

Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-136627NB-I00/ES/ recolecta
Impacto
No disponible en Scopus

Abstract

Overlap and grouping functions can be used to measure events in which we must consider either the maximum or the minimum lack of knowledge. The commutativity of overlap and grouping functions can be dropped out to introduce the notions of pseudo-overlap and pseudo-grouping functions, respectively. These functions can be applied in problems where distinct orders of their arguments yield different values, i.e., in non-symmetric contexts. Intending to reduce the complexity of pseudo-overlap and pseudo-grouping functions, we propose new construction methods for these functions from generalized concepts of additive and multiplicative generators. We investigate the isomorphism between these families of functions. Finally, we apply these functions in an illustrative problem using them in a time series prediction combined model using the IOWA operator to evidence that using these generators and functions implies better performance.

Description

Keywords

Pseudo-overlap, Pseudo-grouping, Archimedean functions, Pseudo-additive generator, Pseudo-multiplicative generator, Time series prediction

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika

Faculty/School

Degree

Doctorate program

item.page.cita

Ferrero-Jaurrieta, M., Paiva, R., Cruz, A., Bedregal, B., Zhang, X., Takac, Z., López-Molina, C., Bustince, H. (2024) Reduction of complexity using generators of pseudo-overlap and pseudo-grouping functions. Fuzzy Sets and Systems, 490, 1-20. https://doi.org/10.1016/j.fss.2024.109025

item.page.rights

© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.