Bustince Sola, Humberto
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Bustince Sola
First Name
Humberto
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Some construction methods for pseudo-overlaps and pseudo-groupings and their application in group decision making(MDPI, 2023) García-Zamora, Diego; Paiva, Rui; Cruz, Anderson; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaIn many real-world scenarios, the importance of different factors may vary, making commutativity an unreasonable assumption for aggregation functions, such as overlaps or groupings. To address this issue, researchers have introduced pseudo-overlaps and pseudo-groupings as their corresponding non-commutative generalizations. In this paper, we explore various construction methods for obtaining pseudo-overlaps and pseudo-groupings using overlaps, groupings, fuzzy negations, convex sums, and Riemannian integration. We then show the applicability of these construction methods in a multi-criteria group decision-making problem, where the importance of both the considered criteria and the experts vary. Our results highlight the usefulness of pseudo-overlaps and pseudo-groupings as a non-commutative alternative to overlaps and groupings.Publication Open Access Reduction of complexity using generators of pseudo-overlap and pseudo-grouping functions(2024) Ferrero Jaurrieta, Mikel; Paiva, Rui; Cruz, Anderson; Bedregal, Benjamin; Zhang, Xiaohong; Takáč, Zdenko; López Molina, Carlos; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaOverlap and grouping functions can be used to measure events in which we must consider either the maximum or the minimum lack of knowledge. The commutativity of overlap and grouping functions can be dropped out to introduce the notions of pseudo-overlap and pseudo-grouping functions, respectively. These functions can be applied in problems where distinct orders of their arguments yield different values, i.e., in non-symmetric contexts. Intending to reduce the complexity of pseudo-overlap and pseudo-grouping functions, we propose new construction methods for these functions from generalized concepts of additive and multiplicative generators. We investigate the isomorphism between these families of functions. Finally, we apply these functions in an illustrative problem using them in a time series prediction combined model using the IOWA operator to evidence that using these generators and functions implies better performance.