Bustince Sola, Humberto
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Bustince Sola
First Name
Humberto
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
53 results
Search Results
Now showing 1 - 10 of 53
Publication Open Access Extensión multidimensional de la integral de Choquet discreta y su aplicación en redes neuronales recurrentes(Universidad de Málaga, 2021) Ferrero Jaurrieta, Mikel; Rodríguez Martínez, Iosu; Pereira Dimuro, Graçaliz; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaEn este trabajo presentamos una definición de la integral de Choquet discreta n-dimensional, para fusionar datos vectoriales. Como aplicación, utilizamos estas nuevas integrales de Choquet discretas multidimensionales en la fusión de información secuencial en las redes neuronales recurrentes, mejorando los resultados obtenidos mediante el método de agregación tradicional.Publication Open Access d-Choquet integrals: Choquet integrals based on dissimilarities(Elsevier, 2020) Bustince Sola, Humberto; Mesiar, Radko; Fernández Fernández, Francisco Javier; Galar Idoate, Mikel; Paternain Dallo, Daniel; Altalhi, A. H.; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Takáč, Zdenko; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA13The paper introduces a new class of functions from [0,1]n to [0,n] called d-Choquet integrals. These functions are a generalization of the 'standard' Choquet integral obtained by replacing the difference in the definition of the usual Choquet integral by a dissimilarity function. In particular, the class of all d-Choquet integrals encompasses the class of all 'standard' Choquet integrals but the use of dissimilarities provides higher flexibility and generality. We show that some d-Choquet integrals are aggregation/pre-aggregation/averaging/functions and some of them are not. The conditions under which this happens are stated and other properties of the d-Choquet integrals are studied.Publication Open Access Análisis de redes sociales basado en las conquistas de César Borgia(Universidad de Málaga, 2021) Fumanal Idocin, Javier; Cordón, Óscar; Alonso Betanzos, Amparo; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaEn este trabajo presentamos el modelado de redes sociales y detección de comunidades utilizando como base un evento histórico real, las conquistas de César Borgia en el siglo XV. Para ello, proponemos un nuevo conjunto de funciones, llamadas funciones de afinidad, disenadas para capturar la 'naturaleza de las interacciones locales entre cada par de actores en una red. Utilizando estas funciones, desarrollamos un nuevo algoritmo de detección de comunidades, el Borgia Clustering, donde las comunidades surgen naturalmente de un proceso de simulación de interacción de múltiples agentes en la red. También discutimos los efectos del tamaño y la escala de cada comunidad, y como pueden ser tomadas en cuenta en el proceso de simulación. Finalmente, comparamos nuestra detección de comunidades con otros algoritmos representativos, encontrando resultados favorables a nuestra propuesta.Publication Open Access Mixture functions and their monotonicity(Elsevier, 2019) Špirková, Jana; Beliakov, Gleb; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasWe consider mixture functions, which are a type of weighted averages for which the corresponding weights are calculated by means of appropriate continuous functions of their inputs. In general, these mixture function need not be monotone increasing. For this reason we study su cient conditions to ensure standard, weak and directional monotonicity for speci c types of weighting functions. We also analyze directional monotonicity when di erentiability is assumed.Publication Open Access Paired structures in knowledge representation(Elsevier, 2016) Montero, Javier; Bustince Sola, Humberto; Pagola Barrio, Miguel; Fernández Fernández, Francisco Javier; Barrenechea Tartas, Edurne; Automática y Computación; Automatika eta KonputazioaIn this position paper we propose a consistent and unifying view to all those basic knowledge representation models that are based on the existence of two somehow opposite fuzzy concepts. A number of these basic models can be found in fuzzy logic and multi-valued logic literature. Here it is claimed that it is the semantic relationship between two paired concepts what determines the emergence of different types of neutrality, namely indeterminacy, ambivalence and conflict, widely used under different frameworks (possibly under different names). It will be shown the potential relevance of paired structures, generated from two paired concepts together with their associated neutrality, all of them to be modeled as fuzzy sets. In this way, paired structures can be viewed as a standard basic model from which different models arise. This unifying view should therefore allow a deeper analysis of the relationships between several existing knowledge representation formalisms, providing a basis from which more expressive models can be later developed.Publication Open Access Hyperspectrum comparison using similarity measures(IEEE, 2017-08-31) López Molina, Carlos; Marco Detchart, Cedric; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; López Maestresalas, Ainara; Ayala Martini, Daniela; Automática y Computación; Automatika eta Konputazioa; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta ProiektuakSimilarity measures, as studied in the context of fuzzy set theory, have been proven applicable to many different fields. Surely, their primary role is to model the perceived (dis-) similarity between two fuzzy sets or, equivalently, the linguistic terms they represent. However, the richness of the dedicated study makes the similarity measures portable to other contexts in which quantitative comparison plays a key role. In this work we present the application of similarity measures to hyperspectrum comparison in the context of in-lab hyperspectral imaging for bioengineering.Publication Open Access Affine construction methodology of aggregation functions(Elsevier, 2020) Roldán López de Hierro, Antonio Francisco; Roldán, Concepción; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Rodríguez Martínez, Iosu; Fardoun, Habib; Lafuente López, Julio; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaAggregation functions have attracted much attention in recent times because of its potential use in many areas such us data fusion and decision making. In practice, most of the aggregation functions that scientists use in their studies are constructed from very simple (usually affine or polynomial) functions. However, these are distinct in nature. In this paper, we develop a systematic study of these two classes of functions from a common point of view. To do this, we introduce the class of affine aggregation functions, which cover both the aforementioned families and most of examples of aggregation functions that are used in practice, including, by its great applicability, the symmetric case. Our study allows us to characterize when a function constructed from affine or polynomial functions is, in fact, a new aggregation function. We also study when sums or products of this kind of functions are again an aggregation function.Publication Open Access The null space of fuzzy inclusion measures(IEEE, 2019) Couso, Inés; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Sánchez, Luciano; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasSome formal relationships between the different axiomatic definitions of inclusion measure are analysed. In particular, the links between the different proposals about the null-space (the collection of pairs associated with a null degree of inclusion) are studied. Taking as starting point the well-known axiomatics of Kitainik and Sinha-Dougherty, we observe that other alternative proposals about the null-space are incompatible with both the null-space and the decomposition axioms of these authors. We also conclude that both the axiomatics of Kitainik and that of Sinha-Dougherty contain certain redundancies. Reduced equivalent lists of axioms are proposed.Publication Open Access N-dimensional admissibly ordered interval-valued overlap functions and its influence in interval-valued fuzzy rule-based classification systems(IEEE, 2021) Da Cruz Asmus, Tiago; Sanz Delgado, José Antonio; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasOverlap functions are a type of aggregation functions that are not required to be associative, generally used to indicate the overlapping degree between two values. They have been successfully used as a conjunction operator in several practical problems, such as fuzzy rulebased classification systems (FRBCSs) and image processing. Some extensions of overlap functions were recently proposed, such as general overlap functions and, in the interval-valued context, n-dimensional interval-valued overlap functions. The latter allow them to be applied in n-dimensional problems with interval-valued inputs, like interval-valued classification problems, where one can apply interval-valued FRBCSs (IV-FRBCSs). In this case, the choice of an appropriate total order for intervals, like an admissible order, can play an important role. However, neither the relationship between the interval order and the n-dimensional interval-valued overlap function (which may or may not be increasing for that order) nor the impact of this relationship in the classification process have been studied in the literature. Moreover, there is not a clear preferred n-dimensional interval-valued overlap function to be applied in an IV-FRBCS. Hence, in this paper we: (i) present some new results on admissible orders, which allow us to introduce the concept of n-dimensional admissibly ordered interval-valued overlap functions, that is, n-dimensional interval-valued overlap functions that are increasing with respect to an admissible order; (ii) develop a width-preserving construction method for this kind of function, derived from an admissible order and an n-dimensional overlap function, discussing some of its features; (iii) analyze the behaviour of several combinations of admissible orders and n-dimensional (admissibly ordered) interval-valued overlap functions when applied in IV-FRBCSs. All in all, the contribution of this paper resides in pointing out the effect of admissible orders and n-dimensional admissibly ordered interval-valued overlap functions, both from a theoretical and applied points of view, the latter when considering classification problems.Publication Open Access A generalization of the Choquet integral defined in terms of the Mobius transform(IEEE, 2020) Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Horanská, Lubomíra; Mesiar, Radko; Stupñanová, Andrea; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaIn this article, we propose a generalization of the Choquet integral, starting fromits definition in terms of the Mobius transform. We modify the product on R considered in the Lovasz extension form of the Choquet integral into a function F, and we discuss the properties of this new functional. For a fixed n, a complete description of all F yielding an n-ary aggregation function with a fixed diagonal section, independent of the considered fuzzy measure, is given, and several particular examples are presented. Finally, all functions F yielding an aggregation function, independent of the number n of inputs and of the considered fuzzy measure, are characterized, and related aggregation functions are shown to be just the Choquet integrals over the distorted inputs.