Bustince Sola, Humberto
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Bustince Sola
First Name
Humberto
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
6 results
Search Results
Now showing 1 - 6 of 6
Publication Open Access Hesitant cognitive uncertain information in aggregation and decision making(University of Sistan and Baluchestan, 2024) Jin, LeSheng; Yager, Ronald R.; Ma, Chao; Langari, Reza; Jana, Chiranjibe; Mesiar, Radko; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaThe concepts of cognitive interval information and cognitive uncertain information, which are two recently proposed types of uncertain information, have been extended in this work to the typical hesitant fuzzy environment. We introduce the notions of typical hesitant monopolar cognitive interval information and typical hesitant cognitive uncertain information. To facilitate their analysis, we define uncertainty degree functions and score functions for these concepts using extended aggregation operators. Furthermore, we reanalyze some decision models discussed in earlier literature using these newly proposed concepts to demonstrate their advantages and potential applications.Publication Open Access Some preference involved aggregation models for basic uncertain information using uncertainty transformation(IOS Press, 2020) Yang, RouJian; Jin, LeSheng; Paternain Dallo, Daniel; Yager, Ronald R.; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaIn decision making, very often the data collected are with different extents of uncertainty. The recently introduced concept, Basic Uncertain Information (BUI), serves as one ideal information representation to well model involved uncertainties with different extents. This study discusses some methods of BUI aggregation by proposing some uncertainty transformations for them. Based on some previously obtained results, we at first define Iowa operator with poset valued input vector and inducing vector. The work then defines the concept of uncertain system, on which we can further introduce the multi-layer uncertainty transformation for BUI. Subsequently, we formally introduce MUT-Iowa aggregation procedure, which has good potential to more and wider application areas. A numerical example is also offered along with some simple usage of it in decision making.Publication Open Access Some bipolar-preferences-involved aggregation methods for a sequence of OWA weight vectors(Springer, 2021) Jin, LeSheng; Yager, Ronald R.; Chen, Zhen-Song; Špirková, Jana; Paternain Dallo, Daniel; Mesiar, Radko; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaThe ordered weighted averaging (OWA) operator and its associated weight vectors have been both theoretically and practically verified to be powerful and effective in modeling the optimism/pessimism preference of decision makers. When several different OWA weight vectors are offered, it is necessary to develop certain techniques to aggregate them into one OWA weight vector. This study firstly details several motivating examples to show the necessity and usefulness of merging those OWA weight vectors. Then, by applying the general method for aggregating OWA operators proposed in a recent literature, we specifically elaborate the use of OWA aggregation to merge OWA weight vectors themselves. Furthermore, we generalize the normal preference degree in the unit interval into a preference sequence and introduce subsequently the preference aggregation for OWA weight vectors with given preference sequences. Detailed steps in related aggregation procedures and corresponding numerical examples are also provided in the current study.Publication Open Access Comprehensive rules-based and preferences induced weights allocation in group decision-making with BUI(Springer, 2022) Li, GePeng; Yager, Ronald R.; Zhang, XinXing; Mesiar, Radko; Jin, LeSheng; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaDecision-makers' subjective preferences can be well modeled using preference aggregation operators and related induced weights allocation mechanisms. However, when several different types of preferences occur in some decision environment with more complex uncertainties, repeated uses of preferences induced weights allocation sometimes become unsuitable or less reasonable. In this work, we discuss a common decision environment where several invited experts will offer their respective evaluation values for a certain object. There are three types of preferences which will significantly affect the weights allocations from experts. Instead of unsuitably performing preference induced weights allocation three times independently and then merging the results together using convex combination as some literatures recently did, in this work, we propose some organic and comprehensive rules-based screen method to first rule out some unqualified experts and then take preference induced weights allocation for the refined group of experts. A numerical example in business management and decision-making is presented to show the cognitive reasonability and practical feasibility. © 2022, The Author(s).Publication Open Access Unsymmetrical basic uncertain information with some decision-making methods(IOS Press, 2022) Jin, LeSheng; Yager, Ronald R.; Chen, Zhen-Song; Mesiar, Radko; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaMotivated by a specific decision-making situation, this work proposes the concept and definition of unsymmetrical basic uncertain information which is a further generalization of basic uncertain information and can model uncertainties in some new decision-making situations. We show that unsymmetrical basic uncertain information in some sense can model linguistic hedges such as 'at least' and 'at most'. Formative weighted arithmetic means and induced aggregations are defined for the proposed concept. Rules-based decision making and semi-copula based integral for this concept with some numerical examples are also presented.Publication Open Access A framework for generalized monotonicity of fusion functions(Elsevier, 2023) Sesma Sara, Mikel; Šeliga, Adam; Boczek, Michał; Jin, LeSheng; Kaluszka, Marek; Kalina, Martin; Bustince Sola, Humberto; Mesiar, Radko; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe relaxation of the property of monotonicity is a trend in the theory of aggregation and fusion functions and several generalized forms of monotonicity have been introduced, most of which are based on the notion of directional monotonicity. In this paper, we propose a general framework for generalized monotonicity that encompasses the different forms of monotonicity that we can find in the literature. Additionally, we introduce various new forms of monotonicity that are not based on directional monotonicity. Specifically, we introduce dilative monotonicity, which requires that the function increases when the inputs have increased by a common factor, and a general form of monotonicity that is dependent on a function T and a subset of the domain Z. This two new generalized monotonicities are the basis to propose a set of different forms of monotonicity. We study the particularities of each of the new proposals and their links to the previous relaxed forms of monotonicity. We conclude that the introduction of dilative monotonicity complements the conditions of weak monotonicity for fusion functions and that (T,Z)-monotonicity yields a condition that is slightly stronger than weak monotonicity. Finally, we present an application of the introduced notions of monotonicity in sentiment analysis.