Some preference involved aggregation models for basic uncertain information using uncertainty transformation

Date

2020

Authors

Yang, RouJian
Jin, LeSheng
Yager, Ronald R.

Director

Publisher

IOS Press
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

Impacto
No disponible en Scopus

Abstract

In decision making, very often the data collected are with different extents of uncertainty. The recently introduced concept, Basic Uncertain Information (BUI), serves as one ideal information representation to well model involved uncertainties with different extents. This study discusses some methods of BUI aggregation by proposing some uncertainty transformations for them. Based on some previously obtained results, we at first define Iowa operator with poset valued input vector and inducing vector. The work then defines the concept of uncertain system, on which we can further introduce the multi-layer uncertainty transformation for BUI. Subsequently, we formally introduce MUT-Iowa aggregation procedure, which has good potential to more and wider application areas. A numerical example is also offered along with some simple usage of it in decision making.

Description

Keywords

Aggregation function, BUI aggregation, Decision making, Evaluation, OWA operators, Uncertain decision making

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika

Faculty/School

Degree

Doctorate program

item.page.cita

Yang, R., Jin, L., Paternain, D., Yager, R. R., Mesiar, R., & Bustince, H. (2020). Some preference involved aggregation models for basic uncertain information using uncertainty transformation. Journal of Intelligent & Fuzzy Systems, 39(1), 325-332. https://doi.org/10.3233/JIFS-191106

item.page.rights

© 2020 – IOS Press and the authors. All rights reserved.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.