Bustince Sola, Humberto
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Bustince Sola
First Name
Humberto
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Some bipolar-preferences-involved aggregation methods for a sequence of OWA weight vectors(Springer, 2021) Jin, LeSheng; Yager, Ronald R.; Chen, Zhen-Song; Špirková, Jana; Paternain Dallo, Daniel; Mesiar, Radko; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaThe ordered weighted averaging (OWA) operator and its associated weight vectors have been both theoretically and practically verified to be powerful and effective in modeling the optimism/pessimism preference of decision makers. When several different OWA weight vectors are offered, it is necessary to develop certain techniques to aggregate them into one OWA weight vector. This study firstly details several motivating examples to show the necessity and usefulness of merging those OWA weight vectors. Then, by applying the general method for aggregating OWA operators proposed in a recent literature, we specifically elaborate the use of OWA aggregation to merge OWA weight vectors themselves. Furthermore, we generalize the normal preference degree in the unit interval into a preference sequence and introduce subsequently the preference aggregation for OWA weight vectors with given preference sequences. Detailed steps in related aggregation procedures and corresponding numerical examples are also provided in the current study.Publication Open Access Hesitant cognitive uncertain information in aggregation and decision making(University of Sistan and Baluchestan, 2024) Jin, LeSheng; Yager, Ronald R.; Ma, Chao; Langari, Reza; Jana, Chiranjibe; Mesiar, Radko; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaThe concepts of cognitive interval information and cognitive uncertain information, which are two recently proposed types of uncertain information, have been extended in this work to the typical hesitant fuzzy environment. We introduce the notions of typical hesitant monopolar cognitive interval information and typical hesitant cognitive uncertain information. To facilitate their analysis, we define uncertainty degree functions and score functions for these concepts using extended aggregation operators. Furthermore, we reanalyze some decision models discussed in earlier literature using these newly proposed concepts to demonstrate their advantages and potential applications.Publication Open Access Some preference involved aggregation models for basic uncertain information using uncertainty transformation(IOS Press, 2020) Yang, RouJian; Jin, LeSheng; Paternain Dallo, Daniel; Yager, Ronald R.; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaIn decision making, very often the data collected are with different extents of uncertainty. The recently introduced concept, Basic Uncertain Information (BUI), serves as one ideal information representation to well model involved uncertainties with different extents. This study discusses some methods of BUI aggregation by proposing some uncertainty transformations for them. Based on some previously obtained results, we at first define Iowa operator with poset valued input vector and inducing vector. The work then defines the concept of uncertain system, on which we can further introduce the multi-layer uncertainty transformation for BUI. Subsequently, we formally introduce MUT-Iowa aggregation procedure, which has good potential to more and wider application areas. A numerical example is also offered along with some simple usage of it in decision making.