Bustince Sola, Humberto

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Bustince Sola

First Name

Humberto

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 58
  • PublicationOpen Access
    Applying d-XChoquet integrals in classification problems
    (IEEE, 2022) Wieczynski, Jonata; Lucca, Giancarlo; Borges, Eduardo N.; Emmendorfer, Leonardo R.; Ferrero Jaurrieta, Mikel; Pereira Dimuro, Graçaliz; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Several generalizations of the Choquet integral have been applied in the Fuzzy Reasoning Method (FRM) of Fuzzy Rule-Based Classification Systems (FRBCS's) to improve its performance. Additionally, to achieve that goal, researchers have searched for new ways to provide more flexibility to those generalizations, by restricting the requirements of the functions being used in their constructions and relaxing the monotonicity of the integral. This is the case of CT-integrals, CC-integrals, CF-integrals, CF1F2-integrals and dCF-integrals, which obtained good performance in classification algorithms, more specifically, in the fuzzy association rule-based classification method for high-dimensional problems (FARC-HD). Thereafter, with the introduction of Choquet integrals based on restricted dissimilarity functions (RDFs) in place of the standard difference, a new generalization was made possible: the d-XChoquet (d-XC) integrals, which are ordered directional increasing functions and, depending on the adopted RDF, may also be a pre-aggregation function. Those integrals were applied in multi-criteria decision making problems and also in a motor-imagery brain computer interface framework. In the present paper, we introduce a new FRM based on the d-XC integral family, analyzing its performance by applying it to 33 different datasets from the literature.
  • PublicationOpen Access
    A rule-based approach for interpretable intensity-modulated radiation therapy treatment selection
    (IEEE, 2024-08-05) González García, Xabier; Fumanal Idocin, Javier; Nunez do Rio, Joan M.; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Artificial Intelligence (AI) methods are becoming essential in healthcare. In the context of Intensity-Modulated Radiation Therapy (IMRT), Knowledge-Based Planning (KBP) methodologies have enabled the modification of treatments in real-time to accommodate morphological changes in patients. KBP for IMRT is a data-driven approach that utilises real-time medical imaging to adjust the radiation dose for a patient as needed for the different stages of an illness. In this work we present an interpretable AI model that selects the best IMRT treatment alternatives and determines which is the best. We use an Adaptive Neuforuzzy Adaptive Inference System (ANFIS), which combines the potential of a neural network with the interpretability of a rule based system. We train the model in a supervised manner using the OpenKBP challenge data repository. For this purpose, we also developed a data augmentation method that is supported by Diffusion Probabilistic Models. This approach enables the generation of a wider spectrum of treatment qualities and aids regularisation. The primary advantage of this framework resides in its ability to offer explanations, which is essential in the deployment of medical procedures in real life. Moreover, it serves as a valuable means to test hypotheses concerning the quality of IMRT treatments. Our study reveals that the developed tool has substantial potential to establish itself as a reference in the realm of explainable IMRT treatment selection tools.
  • PublicationOpen Access
    On the notion of fuzzy dispersion measure and its application to triangular fuzzy numbers
    (Elsevier, 2023) Roldán López de Hierro, Antonio Francisco; Bustince Sola, Humberto; Rueda, María del Mar; Roldán, Concepción; Miguel Turullols, Laura de; Guerra Errea, Carlos; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    In this paper, based on the analysis of the most widely used dispersion measure in the real context (namely, the variance), we introduce the notion of fuzzy dispersion measure associated to a finite set of data given by fuzzy numbers. This measure is implemented as a fuzzy number, so there is no loss of information caused by any defuzzification. The proposed concept satisfies the usual properties in a genuinely fuzzy sense and it avoids limitations in terms of its geometric shape or its analytical properties: under this conception, it could have a piece of its support in the negative part of the real line. This novel notion can be interpreted as a way of fusing the information included in a fuzzy data set in order to make a decision based on its dispersion. To illustrate the main characteristics of this approach, we present an example of a fuzzy dispersion measure that allows to conclude that this new way to deal this problem is coherent, at least, from the point of view of human intuition.
  • PublicationEmbargo
    Non-symmetric over-time pooling using pseudo-grouping functions for convolutional neural networks
    (Elsevier, 2024-07-01) Ferrero Jaurrieta, Mikel; Paiva, Rui; Cruz, Anderson; Bedregal, Benjamin; Miguel Turullols, Laura de; Takáč, Zdenko; López Molina, Carlos; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    Convolutional Neural Networks (CNNs) are a family of networks that have become state-of-the-art in several fields of artificial intelligence due to their ability to extract spatial features. In the context of natural language processing, they can be used to build text classification models based on textual features between words. These networks fuse local features to generate global features in their over-time pooling layers. These layers have been traditionally built using the maximum function or other symmetric functions such as the arithmetic mean. It is important to note that the order of input local features is significant (i.e. the symmetry is not an inherent characteristic of the model). While this characteristic is appropriate for image-oriented CNNs, where symmetry might make the network robust to image rigid transformations, it seems counter-productive for text processing, where the order of the words is certainly important. Our proposal is, hence, to use non-symmetric pooling operators to replace the maximum or average functions. Specifically, we propose to perform over-time pooling using pseudo-grouping functions, a family of non-symmetric aggregation operators that generalize the maximum function. We present a construction method for pseudo-grouping functions and apply different examples of this family to over-time pooling layers in text-oriented CNNs. Our proposal is tested on seven different models and six different datasets in the context of engineering applications, e.g. text classification. The results show an overall improvement of the models when using non-symmetric pseudo-grouping functions over the traditional pooling function.
  • PublicationOpen Access
    A supervised fuzzy measure learning algorithm for combining classifiers
    (Elsevier, 2023) Uriz Martín, Mikel Xabier; Paternain Dallo, Daniel; Bustince Sola, Humberto; Galar Idoate, Mikel; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Fuzzy measure-based aggregations allow taking interactions among coalitions of the input sources into account. Their main drawback when applying them in real-world problems, such as combining classifier ensembles, is how to define the fuzzy measure that governs the aggregation and specifies the interactions. However, their usage for combining classifiers has shown its advantage. The learning of the fuzzy measure can be done either in a supervised or unsupervised manner. This paper focuses on supervised approaches. Existing supervised approaches are designed to minimize the mean squared error cost function, even for classification problems. We propose a new fuzzy measure learning algorithm for combining classifiers that can optimize any cost function. To do so, advancements from deep learning frameworks are considered such as automatic gradient computation. Therefore, a gradient-based method is presented together with three new update policies that are required to preserve the monotonicity constraints of the fuzzy measures. The usefulness of the proposal and the optimization of cross-entropy cost are shown in an extensive experimental study with 58 datasets corresponding to both binary and multi-class classification problems. In this framework, the proposed method is compared with other state-of-the-art methods for fuzzy measure learning.
  • PublicationOpen Access
    Fuzzy clustering to encode contextual information in artistic image classification
    (Springer, 2022) Fumanal Idocin, Javier; Takáč, Zdenko; Horanská, Lubomíra; Bustince Sola, Humberto; Cordón, Óscar; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Automatic art analysis comprises of utilizing diverse processing methods to classify and categorize works of art. When working with this kind of pictures, we have to take under consideration different considerations compared to classical picture handling, since works of art alter definitely depending on the creator, the scene delineated or their aesthetic fashion. This extra data improves the visual signals gotten from the images and can lead to better performance. However, this information needs to be modeled and embed alongside the visual features of the image. This is often performed utilizing deep learning models, but they are expensive to train. In this paper we utilize the Fuzzy C-Means algorithm to create a embedding strategy based on fuzzy memberships to extract relevant information from the clusters present in the contextual information. We extend an existing state-of-the-art art classification system utilizing this strategy to get a new version that presents similar results without training additional deep learning models.
  • PublicationOpen Access
    Análisis de los cambios en los patrones de temperatura mediante técnicas de stream clustering
    (CAEPIA, 2024) Urío Larrea, Asier; Pereira Dimuro, Graçaliz; Andreu-Pérez, Javier; Camargo, Heloisa A.; Aguirre Eraso, Javier; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    El cambio climático afecta a las condiciones medioambientales de las distintas regiones. La capacidad de constatar estos cambios es una eficaz herramienta para adaptarse a la evolución de las condiciones. Los datos meteorológicos se generan continuamente en múltiples estaciones de todo el mundo, proporcionando una valiosa información sobre la variabilidad en el tiempo de los patrones climáticos. El estudio de este flujo de datos nos permite comprender mejor los nuevos patrones climáticos. Este trabajo explora, mediante un algoritmo de agrupamiento de flujos de datos (stream clustering), el potencial de emplear datos meteorológicos obtenidos en diferentes localizaciones geográficas para rastrear el cambio en los patrones climáticos en la Comunidad Foral de Navarra durante los últimos 20 años. El estudio de caso mostró la aplicabilidad de los métodos de flujos de datos a la segmentación incremental de regiones geográficas en función de sus factores climatológicos.
  • PublicationOpen Access
    Positron emission tomography image segmentation based on atanassov's intuitionistic fuzzy sets
    (MDPI, 2022) Couto, Pedro; Bento, Telmo; Bustince Sola, Humberto; Melo-Pinto, Pedro; Automática y Computación; Automatika eta Konputazioa
    In this paper, we present an approach to fully automate tumor delineation in positron emission tomography (PET) images. PET images play a major role in medicine for in vivo imaging in oncology (PET images are used to evaluate oncology patients, detecting emitted photons from a radiotracer localized in abnormal cells). PET image tumor delineation plays a vital role both in pre-and post-treatment stages. The low spatial resolution and high noise characteristics of PET images increase the challenge in PET image segmentation. Despite the difficulties and known limitations, several image segmentation approaches have been proposed. This paper introduces a new unsupervised approach to perform tumor delineation in PET images using Atanassov's intuitionistic fuzzy sets (A-IFSs) and restricted dissimilarity functions. Moreover, the implementation of this methodology is presented and tested against other existing methodologies. The proposed algorithm increases the accuracy of tumor delineation in PET images, and the experimental results show that the proposed method outperformed all methods tested.
  • PublicationOpen Access
    Pseudo overlap functions, fuzzy implications and pseudo grouping functions with applications
    (MDPI, 2022) Zhang, Xiaohong; Liang, Rong; Bustince Sola, Humberto; Bedregal, Benjamin; Fernández Fernández, Francisco Javier; Li, Mengyuan; Ou, Qiqi; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Overlap and grouping functions are important aggregation operators, especially in information fusion, classification and decision-making problems. However, when we do more in-depth application research (for example, non-commutative fuzzy reasoning, complex multi-attribute decision making and image processing), we find overlap functions as well as grouping functions are required to be commutative (or symmetric), which limit their wide applications. For the above reasons, this paper expands the original notions of overlap functions and grouping functions, and the new concepts of pseudo overlap functions and pseudo grouping functions are proposed on the basis of removing the commutativity of the original functions. Some examples and construction methods of pseudo overlap functions and pseudo grouping functions are presented, and the residuated implication (co-implication) operators derived from them are investigated. Not only that, some applications of pseudo overlap (grouping) functions in multi-attribute (group) decision-making, fuzzy mathematical morphology and image processing are discussed. Experimental results show that, in many application fields, pseudo overlap functions and pseudo grouping functions have greater flexibility and practicability.
  • PublicationOpen Access
    Comprehensive rules-based and preferences induced weights allocation in group decision-making with BUI
    (Springer, 2022) Li, GePeng; Yager, Ronald R.; Zhang, XinXing; Mesiar, Radko; Jin, LeSheng; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Decision-makers' subjective preferences can be well modeled using preference aggregation operators and related induced weights allocation mechanisms. However, when several different types of preferences occur in some decision environment with more complex uncertainties, repeated uses of preferences induced weights allocation sometimes become unsuitable or less reasonable. In this work, we discuss a common decision environment where several invited experts will offer their respective evaluation values for a certain object. There are three types of preferences which will significantly affect the weights allocations from experts. Instead of unsuitably performing preference induced weights allocation three times independently and then merging the results together using convex combination as some literatures recently did, in this work, we propose some organic and comprehensive rules-based screen method to first rule out some unqualified experts and then take preference induced weights allocation for the refined group of experts. A numerical example in business management and decision-making is presented to show the cognitive reasonability and practical feasibility. © 2022, The Author(s).