Martínez Echeverri, Álvaro
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Martínez Echeverri
First Name
Álvaro
person.page.departamento
Ingeniería
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
7 results
Search Results
Now showing 1 - 7 of 7
Publication Open Access Design and analysis of a two-stage cascade system for heating and hot water production in nearly zero-energy buildings using thermoelectric technology(MDPI, 2024-12-16) Ordóñez, Javier ; Díaz de Garayo, Sergio; Martínez Echeverri, Álvaro; Algarra Pérez, Fernando; Astrain Ulibarrena, David; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako GobernuaThis paper proposes an innovative system that integrates two thermoelectric heat pumps (one air–water and the other water–water) with two thermal storage tanks at different temperatures to provide heating and domestic hot water to a 73.3 m2 passive-house-certified dwelling in Pamplona (Spain). The air–water thermoelectric heat pump extracts heat from the ambient air and provides heat to a tank at intermediate temperature, which supplies water to a radiant floor. The water–water heat pump takes heat from this tank and provides heat to the other tank, at higher temperature, which supplies domestic hot water. The system performance and comfort conditions are computationally analyzed during the month of January under the climate of Pamplona and under different European climates. The COP of the system lays between 1.3 and 1.7, depending on the climate, because of the low COP of the air–water thermoelectric heat pump. However, it is able to provide water for the radiant floor and to maintain the temperature of the dwelling above 20 °C 99.8% of the time. Moreover, it provides domestic hot water at a temperature above 43 °C 99.9% of the time. Noteworthy is the fact that the water–water heat pump presents a COP close to 4, which opens up the possibilities of working in combination with more efficient heat pumps for the first stage.Publication Open Access Simulation of thermoelectric heat pumps in nearly zero energy buildings: why do all models seem to be right?(Elsevier, 2021) Martínez Echeverri, Álvaro; Díaz de Garayo, Sergio; Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Catalán Ros, Leyre; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISCThe use of thermoelectric heat pumps for heat, ventilation, and air conditioning in nearly-zero-energy buildings is one of the most promising applications of thermoelectrics. However, simulation works in the literature are predominately based on the simple model, which was proven to exhibit significant deviations from experimental results. Nine modelling techniques have been compared in this work, according to statistical methods based on uncertainty analysis, in terms of predicted coefficient of performance and cooling power. These techniques come from the combination of three simulation models for thermoelectric modules (simple model, improved model, electric analogy) and five methods for implementing the thermoelectric properties. The main conclusion is that there is no statistical difference in the mean values of coefficient of performance and cooling power provided by these modelling techniques under all the scenarios, at 95% level of confidence. However, differences appear in the precision of these results in terms of uncertainty of the confidence intervals. Minimum values of uncertainty are obtained when the thermal resistance ratio approaches 0.1, being ±8% when using temperature-dependent expressions for the thermoelectric properties, ±18% when using Lineykin's method, and ± 25% when using Chen's method. The best combination is that composed of the simple model and temperature-dependent expressions for the thermoelectric properties. Additionally, if low values of resistance ratio are anticipated, empirical expressions from the literature can be used for the thermal resistance of the heat exchangers; for high values, though, experimental tests should be deployed, especially for the heat exchanger on the hot side.Publication Open Access Optimal combination of an air-to-air thermoelectric heat pump with a heat recovery system to HVAC a passive house dwelling(Elsevier, 2022) Díaz de Garayo, Sergio; Martínez Echeverri, Álvaro; Astrain Ulibarrena, David; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISCThe main objective of this research is to propose a HVAC system for an 80–100 m2 passive house dwelling based on a thermoelectric air-to-air heat pump combined with a heat recovery unit. The computational parametric investigation demonstrates that the integration of the heat recovery unit significantly improves the coefficient of performance of the heat pump: 2–3 times for partial load operation and 12.5 % for maximum load. Moreover, the number of required modules to reach the maximum performance is at least 5 times lower. A second analysis assesses its seasonal heating performance in three climates as stated by the energy labeling Directive 2010/30/EU. The optimum number of thermoelectric modules in all cases is close to 15, regardless of the climate. This 15-modules thermoelectric heat pump provides a maximum heating capacity of 2500 W and 405 W for cooling, which compensates the typical internal heat gains and the transmission heat flux through the building envelope and the ventilation in the passive house dwelling. Finally, the analysis reveals that, in order to increase this cooling capacity, it is more convenient the improvement of the heat exchangers between the thermoelectric modules and the cooling air stream, rather than increasing the number of modules.Publication Open Access Heat pipes thermal performance for a reversible thermoelectric cooler-heat pump for a nZEB(Elsevier, 2019) Aranguren Garacochea, Patricia; Díaz de Garayo, Sergio; Martínez Echeverri, Álvaro; Araiz Vega, Miguel; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; IngenieríaThe nZEB standards reduce the energy demand of these buildings to a minimum, obtaining this little energy from renewable resources. Taking these aspect into consideration, a thermoelectric cooler-heat pump is proposed to achieve the comfort temperature along the whole year. The same device can provide heat in winter and it can cool down the buildings in summer just by switching the voltage supply polarity. Heat pipes are studied to work on both sides of the thermoelectric modules in order to optimize the heat transfer as these devices present really good thermal resistances and they can work in any position. However, they present pretty different thermal resistances if they work on the cold or on the hot side of the modules. A methodology to thermally characterize these heat exchangers working in both orientations is proposed and a validated computational model is developed to optimize the thermoelectric cooler-heat pump for a nZEB application. The number of thermoelectric modules, the position of the device, the ambient temperature and the air mass flow determine the operation and consequently they need to be studied in order to optimize the application.Publication Open Access Annual energy performance of a thermoelectric heat pump combined with a heat recovery unit to HVAC one passive house dwelling(Elsevier, 2022) Díaz de Garayo, Sergio; Martínez Echeverri, Álvaro; Astrain Ulibarrena, David; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISCThis paper proposes a HVAC system that integrates a thermoelectric heat pump with a double flux ventilation system and a sensible heat recovery unit able to provide heating, cooling and ventilation to a 74.3 m2 Passive House certified dwelling in Pamplona (Spain). This study computationally investigates the energy performance of the system and the comfort conditions of the dwelling for one year long. The thermoelectric HVAC system maintains adequate comfort conditions with an indoor temperature between 20–23 °C in wintertime and 23–25 °C during summer, thanks to the precise control of the voltage supplied to the thermoelectric heat pump that can regulate the heating/cooling capacity from 5 to 100 %. The system consumes 1143.3 kWh/y (15.3 kWh/m2y) of electric energy, that can be provided by 4 photovoltaic panels of 250 Wp each. This system is then compared with a vapor compression heat pump with a COP of 4.5. The vapor compression system reduces the electric energy consumption by 36.1 % with respect to the thermoelectric system, which allows saving only 270 Wp (1–2 PV panels). This demonstrates the promising application of thermoelectricity for HVAC in passive houses.Publication Open Access Prototype of an air to air thermoelectric heat pump integrated with a double flux mechanical ventilation system for passive houses(Elsevier, 2021) Díaz de Garayo, Sergio; Martínez Echeverri, Álvaro; Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISCThis paper describes the design of an air-to-air thermoelectric heat pump for its integration with a double flux mechanical ventilation system for domestic use in Passive House standard. The prototype has been built and thermally characterized in a test bench reproducing winter and summer conditions, with different gaps between indoor and outdoor temperatures. In addition, two different integration possibilities have been analyzed and tested: a stand-alone installation and the combination with a heat recovery unit. This prototype is composed of 10 thermoelectric modules and finned heat pipes to transfer the heat between the modules and the incoming and outgoing ventilation flows. The maximum heating capacity with 12 V supply was proven to be 1,250 W for heating and 375 W for cooling, with COPs ranging 1.5–4 and 0.5–2.5 respectively. Results show the variations in the performance of the thermoelectric heat pump depending on the voltage supply (3–12 V), the air flows (55–130 m3/h) and the temperature gaps between them. This paper demonstrates the convenience of combining passive and active heat recovery technologies (thermoelectric pump coupled to a heat recovery unit), bringing improvements on the thermal power higher than 25% for heating and 10% for cooling, with respect to the thermoelectric heat pump working directly between the incoming and outgoing air flows. The COP is also increased, especially for low energy demands, when the voltage is 3–6 V. In these cases, the COP might be improved by 50% for heating and 30% for cooling.Publication Open Access Assessing the reliability of current simulation of thermoelectric heat pumps for nearly zero energy buildings: expected deviations and general guidelines(Elsevier, 2019) Martínez Echeverri, Álvaro; Díaz de Garayo, Sergio; Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; IngenieríaThis paper makes evident that a rigorous review of simulation methods for thermoelectric heat pumps in nearly-zero energy buildings is needed, as incoherent results during verification and validation of simulation models are reported in the literature. Statistical methods based on uncertainty analysis are deployed to calculate the minimum deviations between experimental and simulated values of the main variables that define the performance of a thermoelectric heat pump, within working scenarios expected in nearly-zero energy buildings. Results indicate that the narrower confidence intervals of these deviations are set by the uncertainties in the calculation of the thermoelecric properties of the thermoelectric modules. The minimum deviation in the prediction of the electric power consumed by the thermoelectric heat pump is ±6% in all scenarios. Likewise, confidence intervals for the heat flow emitted to the hot reservoir range from ±8% for high operating voltages of the thermoelectric heat pump to ±23% for low ones. In similar terms, those of the coefficient of performance range from ±4% to ±21%. These lower limits cannot be reduced unless the uncertainties in the measurement of the thermoelectric properties are reduced. In fact, these confidence intervals are due to increase as more uncertainties are added in the analysis, so wider intervals are expected when heat exchangers and complex heat reservoir are introduced in the system. To avoid so, several guidelines for uncertainty reduction are included in the paper, intended to increase the reliability of the simulation of thermoelectric heat pumps. Among them, relevant is the precise account of the aspect ratio in a thermoelectric module, as well as the deployment of temperature and voltage sensors with systematic standard uncertainties lower than 0.3 °C and 0.01 V respectively. The paper demonstrates the relevance of uncertainty propagation analysis in the verification and validation of the simulation models in this field, and underlines how misleading could be just to compare average values of experimental and simulated results.