Martínez Echeverri, Álvaro
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Martínez Echeverri
First Name
Álvaro
person.page.departamento
Ingeniería
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
10 results
Search Results
Now showing 1 - 10 of 10
Publication Open Access Design and analysis of a two-stage cascade system for heating and hot water production in nearly zero-energy buildings using thermoelectric technology(MDPI, 2024-12-16) Ordóñez, Javier ; Díaz de Garayo, Sergio; Martínez Echeverri, Álvaro; Algarra Pérez, Fernando; Astrain Ulibarrena, David; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako GobernuaThis paper proposes an innovative system that integrates two thermoelectric heat pumps (one air–water and the other water–water) with two thermal storage tanks at different temperatures to provide heating and domestic hot water to a 73.3 m2 passive-house-certified dwelling in Pamplona (Spain). The air–water thermoelectric heat pump extracts heat from the ambient air and provides heat to a tank at intermediate temperature, which supplies water to a radiant floor. The water–water heat pump takes heat from this tank and provides heat to the other tank, at higher temperature, which supplies domestic hot water. The system performance and comfort conditions are computationally analyzed during the month of January under the climate of Pamplona and under different European climates. The COP of the system lays between 1.3 and 1.7, depending on the climate, because of the low COP of the air–water thermoelectric heat pump. However, it is able to provide water for the radiant floor and to maintain the temperature of the dwelling above 20 °C 99.8% of the time. Moreover, it provides domestic hot water at a temperature above 43 °C 99.9% of the time. Noteworthy is the fact that the water–water heat pump presents a COP close to 4, which opens up the possibilities of working in combination with more efficient heat pumps for the first stage.Publication Open Access Resistance-capacitance thermal models as alternatives to finite-element numerical models in the simulation of thermoelectric modules for electric power generation(Elsevier, 2023) Martínez Echeverri, Álvaro; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThis paper demonstrates that resistance–capacitance models provide equal results than models based on finiteelement software when predicting the performance of a thermoelectric module under transient-state conditions. Previous papers on this topic fall short as comparing finite-element models with simplified versions of resistance–capacitance models. It was confirmed that resistance–capacitance models replicate results of finite-element models in the simulation of a thermoelectric module under steady-state conditions. Deviations lower than 3 % in electric power and efficiency (ratio of electric power to heat input) are obtained for temperature differences between heat source and heat sink as large as 200 K. Similarly, deviations lower than 3 % are obtained for simulation of a thermoelectric module under transientstate conditions. Resistance-capacitance models not only replicate values, trends and rates of variation predicted by finite-element models under step, linear and sinewave variations in the boundary conditions, but they also do this with negligible computational cost.Publication Open Access Simulation of thermoelectric heat pumps in nearly zero energy buildings: why do all models seem to be right?(Elsevier, 2021) Martínez Echeverri, Álvaro; Díaz de Garayo, Sergio; Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Catalán Ros, Leyre; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISCThe use of thermoelectric heat pumps for heat, ventilation, and air conditioning in nearly-zero-energy buildings is one of the most promising applications of thermoelectrics. However, simulation works in the literature are predominately based on the simple model, which was proven to exhibit significant deviations from experimental results. Nine modelling techniques have been compared in this work, according to statistical methods based on uncertainty analysis, in terms of predicted coefficient of performance and cooling power. These techniques come from the combination of three simulation models for thermoelectric modules (simple model, improved model, electric analogy) and five methods for implementing the thermoelectric properties. The main conclusion is that there is no statistical difference in the mean values of coefficient of performance and cooling power provided by these modelling techniques under all the scenarios, at 95% level of confidence. However, differences appear in the precision of these results in terms of uncertainty of the confidence intervals. Minimum values of uncertainty are obtained when the thermal resistance ratio approaches 0.1, being ±8% when using temperature-dependent expressions for the thermoelectric properties, ±18% when using Lineykin's method, and ± 25% when using Chen's method. The best combination is that composed of the simple model and temperature-dependent expressions for the thermoelectric properties. Additionally, if low values of resistance ratio are anticipated, empirical expressions from the literature can be used for the thermal resistance of the heat exchangers; for high values, though, experimental tests should be deployed, especially for the heat exchanger on the hot side.Publication Open Access Optimal combination of an air-to-air thermoelectric heat pump with a heat recovery system to HVAC a passive house dwelling(Elsevier, 2022) Díaz de Garayo, Sergio; Martínez Echeverri, Álvaro; Astrain Ulibarrena, David; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISCThe main objective of this research is to propose a HVAC system for an 80–100 m2 passive house dwelling based on a thermoelectric air-to-air heat pump combined with a heat recovery unit. The computational parametric investigation demonstrates that the integration of the heat recovery unit significantly improves the coefficient of performance of the heat pump: 2–3 times for partial load operation and 12.5 % for maximum load. Moreover, the number of required modules to reach the maximum performance is at least 5 times lower. A second analysis assesses its seasonal heating performance in three climates as stated by the energy labeling Directive 2010/30/EU. The optimum number of thermoelectric modules in all cases is close to 15, regardless of the climate. This 15-modules thermoelectric heat pump provides a maximum heating capacity of 2500 W and 405 W for cooling, which compensates the typical internal heat gains and the transmission heat flux through the building envelope and the ventilation in the passive house dwelling. Finally, the analysis reveals that, in order to increase this cooling capacity, it is more convenient the improvement of the heat exchangers between the thermoelectric modules and the cooling air stream, rather than increasing the number of modules.Publication Open Access Experimental and computational investigation of passive heat exchangers to enhance the performance of a geothermal thermoelectric generator(Elsevier, 2024) Pascual Lezaun, Nerea; Alegría Cía, Patricia; Araiz Vega, Miguel; Martínez Echeverri, Álvaro; Astrain Ulibarrena, David; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISCThermoelectric devices hold significant promise for generating electricity from geothermal heat, enabling the powering of measuring equipment in remote locations without the need for moving parts. Nevertheless, most developed geothermal thermoelectric generators employ fans and pumps to enhance heat transfer, thereby compromising the robustness and reliability inherent to thermoelectricity. Furthermore, there is a lack of research on passive heat exchangers for geothermal thermoelectric generators, particularly in studying their operation under a wide range of meteorological conditions. Therefore, this paper conducts a comprehensive analysis of passive heat exchangers for the cold side of the generators. Phase-change-based heat exchangers differing in their length and fluid are studied experimentally, along with a fin dissipator. Additionally, the influence of wind velocity on heat transfer and mechanical requirements is further explored through a Computational Fluid Dynamics model. The most significant outcome is quantifying the impact of the design parameters and operational variables on the electrical production of the thermoelectric generator. Accordingly, this research aims to broaden the application of these generators to extreme environments, such as Deception Island in Antarctica. Under average operational conditions, generators incorporating 400 mm water heat pipes generate 0.95 W per thermoelectric module, while those incorporating heat pipes with methanol achieve an average of 0.70 W. Moreover, water and methanol-based systems produce 120% and 60% more power than generators using a fin dissipator. Nonetheless, for temperatures beyond -6.5 °C, water might freeze and the methanol-based heat exchangers become more suitable.Publication Open Access Development and experimental validation of a two-stage thermoelectric heat pump computational model for heating applications(Elsevier, 2024) Erro Iturralde, Irantzu; Aranguren Garacochea, Patricia; Martínez Echeverri, Álvaro; Astrain Ulibarrena, David; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra - Nafarroako Unibertsitate PublikoaThe utilisation of thermoelectric technology as a heat pump in heating applications necessitates comprehensive investigation. The scalable nature of thermoelectric technology enables its operation at elevated temperatures without the requirement of refrigerants. In this work, an accurate computational model that can simulate one- and two-stage thermoelectric heat pumps is developed. This model uses the electric-thermal analogy and the finite difference method, including the thermoelectric effects, temperature dependent properties, thermal contact resistances and all heat exchangers, even the intermediate heat exchanger in the case of a two-stage configuration. Moreover, the model has been experimentally validated by built and tested prototypes, being the first time that a two-stage thermoelectric heat pump model is experimentally validated. The discrepancy between the simulated and experimental results is below the ± 10 % for , ± 8 % for generated heat and temperature lift in the airflow, and less than the ± 6 % for consumed power. Additonally, the model simulates real tendencies under different operating conditions, proving the reliability of the developed thermoelectric heat pump model. Finally, the model is used to optimise a thermoelectric system combining one- and two-stage thermoelectric heat pumps, and hybridising them with electric resistances. An airflow of 16.5 m3/h is heated from 25 °C to 160 °C, achieving a maximum of 1.21. Lastly, the importance of considering the thermal resistances of the heat exchangers is computationally modelled and demonstrated. Not taking them into account would overestimate the performance of the TEHP system by more than the 7 %.Publication Open Access Prospects of waste-heat recovery from a real industry using thermoelectric generators: economic and power output analysis(Elsevier, 2020) Araiz Vega, Miguel; Casi Satrústegui, Álvaro; Catalán Ros, Leyre; Martínez Echeverri, Álvaro; Astrain Ulibarrena, David; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2018-000101One of the options to reduce industrial energy costs and the environmental impact is to recover the waste-heat produce in some processes. This paper proposes the use of thermoelectric generators at a stone wool manufacturing plant to transform waste-heat from a hot gas flow into useful electricity. A combination of two computational models, previously developed and validated, has been used to perform the optimization from a double point of view: power output and economic cost. The proposed thermoelectric generator includes fin dissipaters and biphasic thermosyphons as the hot and cold side heat exchangers respectively. The model takes into account the temperature drop along the duct where the gases flow, the electric consumption of the auxiliary equipment, and the configuration and geometry of the heat exchangers. After the simulations a maximum net power production of 45 838 W is achieved considering an occupancy ratio of 0.40 and a fin spacing of 10 mm. The installation cost is minimized to 10.6 €/W with an occupancy ratio of 0.24. Besides, the Levelised Cost of Electricity, LCOE, is estimated for a thermoelectric generator for the first time. It is necessary to use standar methodologies to compare this technology to others. The LCOE estimated for the proposed design is around 15 c€/kWh within the ranges of current energy sources, proving, in this way, the capabilities of waste-heat recovery from industrial processes at reasonable prices with thermoelectric generators.Publication Open Access Influence of temperature and aging on the thermal contact resistance in thermoelectric devices(Springer, 2020) Rodríguez García, Antonio; Pérez Artieda, Miren Gurutze; Beisti Antoñanzas, Irene; Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; Ingeniaritza; Institute of Smart Cities - ISC; IngenieríaDuring thermal design in the first phases development, thermoelectric systems, such as thermoelectric generators, the most important parameter affecting the performance is thermal resistance of the components. This paper focusses on the thermal contact resistance (TCR), analyzing the influence of aging and temperature on different thermal interface materials (TIMs), i.e., thermal paste, graphite and indium. In previous papers, TCR has been studied depending on parameters such as surface roughness, bonding pressure, thermal conductivity and surface hardness. However, in thermoelectric applications, a relevant aspect to consider when choosing a TIM is aging due to thermal stress. The exposure of this type of material to high temperatures for long periods of time leads to deterioration, which causes an increase in the TCR impairing the conduction of the heat flow. Therefore, there is a need to study the behavior of TIMs exposed to temperatures typical in thermoelectric generators to make a correct selection of the TIM. It has been observed that exposure to temperatures of around 180°C induces a significant increase in the thermal impedance of the three TIMs under study, although this effect is much more relevant for thermal paste. The contact, comprising steel, thermal paste and ceramic, presents a 300% increase in the thermal impedance after 70 days of aging, whereas that exceeds 185% for the contact of aluminum, thermal paste and ceramic. In the tests with exposure temperature of 60°C, there is no observed decrease in the thermal impedance.Publication Open Access Annual energy performance of a thermoelectric heat pump combined with a heat recovery unit to HVAC one passive house dwelling(Elsevier, 2022) Díaz de Garayo, Sergio; Martínez Echeverri, Álvaro; Astrain Ulibarrena, David; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISCThis paper proposes a HVAC system that integrates a thermoelectric heat pump with a double flux ventilation system and a sensible heat recovery unit able to provide heating, cooling and ventilation to a 74.3 m2 Passive House certified dwelling in Pamplona (Spain). This study computationally investigates the energy performance of the system and the comfort conditions of the dwelling for one year long. The thermoelectric HVAC system maintains adequate comfort conditions with an indoor temperature between 20–23 °C in wintertime and 23–25 °C during summer, thanks to the precise control of the voltage supplied to the thermoelectric heat pump that can regulate the heating/cooling capacity from 5 to 100 %. The system consumes 1143.3 kWh/y (15.3 kWh/m2y) of electric energy, that can be provided by 4 photovoltaic panels of 250 Wp each. This system is then compared with a vapor compression heat pump with a COP of 4.5. The vapor compression system reduces the electric energy consumption by 36.1 % with respect to the thermoelectric system, which allows saving only 270 Wp (1–2 PV panels). This demonstrates the promising application of thermoelectricity for HVAC in passive houses.Publication Open Access Prototype of an air to air thermoelectric heat pump integrated with a double flux mechanical ventilation system for passive houses(Elsevier, 2021) Díaz de Garayo, Sergio; Martínez Echeverri, Álvaro; Aranguren Garacochea, Patricia; Astrain Ulibarrena, David; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISCThis paper describes the design of an air-to-air thermoelectric heat pump for its integration with a double flux mechanical ventilation system for domestic use in Passive House standard. The prototype has been built and thermally characterized in a test bench reproducing winter and summer conditions, with different gaps between indoor and outdoor temperatures. In addition, two different integration possibilities have been analyzed and tested: a stand-alone installation and the combination with a heat recovery unit. This prototype is composed of 10 thermoelectric modules and finned heat pipes to transfer the heat between the modules and the incoming and outgoing ventilation flows. The maximum heating capacity with 12 V supply was proven to be 1,250 W for heating and 375 W for cooling, with COPs ranging 1.5–4 and 0.5–2.5 respectively. Results show the variations in the performance of the thermoelectric heat pump depending on the voltage supply (3–12 V), the air flows (55–130 m3/h) and the temperature gaps between them. This paper demonstrates the convenience of combining passive and active heat recovery technologies (thermoelectric pump coupled to a heat recovery unit), bringing improvements on the thermal power higher than 25% for heating and 10% for cooling, with respect to the thermoelectric heat pump working directly between the incoming and outgoing air flows. The COP is also increased, especially for low energy demands, when the voltage is 3–6 V. In these cases, the COP might be improved by 50% for heating and 30% for cooling.