Person: Ábrego Arlegui, Andrés
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Ábrego Arlegui
First Name
Andrés
person.page.departamento
Proyectos e Ingeniería Rural
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
1 results
Search Results
Now showing 1 - 1 of 1
Publication Open Access Potential of NIRS technology for the determination of cannabinoid content in industrial hemp (Cannabis sativa L.)(MDPI, 2022) Jarén Ceballos, Carmen; Zambrana, P.; Pérez Roncal, Claudia; López Maestresalas, Ainara; Ábrego Arlegui, Andrés; Arazuri Garín, Silvia; Institute on Innovation and Sustainable Development in Food Chain - ISFOODIndustrial hemp (Cannabis sativa L.) is a plant native to Asia, and is considered to be a primary source of food, textile fiber, and medicines. It is characterized by containing minimal concentrations of delta-9 tetrahydrocannabidol (THC), which is the main psychoactive chemical component, and cannabidiol (CBD), a non-psychoactive substance. In most European countries, the maximum concentration legally allowed for cultivation is 0.2% of THC, and it is currently under debate whether to increase this level to 0.3%. Moreover, in many countries its production is being regularized and legalized, increasing the need for a rapid analysis method. The present work evaluated the cannabinoid content in hemp (Cannabis sativa L.) using near infrared spectroscopy (NIRS) technology in combination with chemometric techniques. For this, several samples of the Kompolti variety were analyzed. Samples were dried and ground, and the content of total THC (%) and total CBD (%) was determined by high performance liquid chromatography (HPLC) with a diode array detector as reference measurements, and then the spectra were collected by NIRS. Principal component analysis and partial least square regression models were developed. Good coefficients of determination of cross-validation of 0.77 for THC and CBD, and a ratio of prediction to deviation >2 for total THC and CBD, were achieved. The results obtained show that NIRS technology has potential for the quantitative determination of cannabinoids. Therefore, this analytical method would allow a simpler, more robust, precise, and sustainable estimation than the current HPLC approach.