Díaz Lucas, Silvia

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Díaz Lucas

First Name

Silvia

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 25
  • PublicationOpen Access
    Temperature sensor using a multiwavelength erbium-doped fiber ring laser
    (Hindawi, 2017) Díaz Lucas, Silvia; San Fabián García, Noé; Socorro Leránoz, Abián Bentor; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    A novel temperature sensor is presented based on a multiwavelength erbium-doped fiber ring laser.The laser is comprised of fiber Bragg grating reflectors as the oscillation wavelength selecting filters.The performance of the temperature sensor in terms of both wavelength and laser output power was investigated, as well as the application of this systemfor remote temperaturemeasurements.
  • PublicationOpen Access
    Long-range hybrid network with point and distributed Brillouin sensors using Raman amplification
    (Optical Society of America, 2010) Zornoza Indart, Ander; Pérez Herrera, Rosa Ana; Elosúa Aguado, César; Díaz Lucas, Silvia; Bariáin Aisa, Cándido; Loayssa Lara, Alayn; López-Amo Sáinz, Manuel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    We propose a novel concept for hybrid networks that combine point and distributed Brillouin sensors in a cost-effective architecture that also deploys remote distributed Raman amplification to extend the sensing range. A 46-km proof-of-concept network is experimentally demonstrated integrating point vibration sensors based on fiber Bragg gratings and tapers with distributed temperature sensing along the network bus. In this network the use of Raman amplification to compensate branching and fiber losses provides a temperature resolution of 0.7°C and 13 m. Moreover, it was possible to obtain good optical signal to noise ratio in the measurements from the four point vibration sensors that were remotely multiplexed in the network. These low-cost intensity sensors are able to measure vibrations in the 0.1 to 50 Hz frequency range, which are important in the monitoring of large infrastructures such as pipelines.
  • PublicationOpen Access
    All fiber interferometer for ice detection
    (Optica Publishing Group, 2018) Arozarena Arana, Jesús Antonio; Socorro Leránoz, Abián Bentor; Del Villar, Ignacio; Díaz Lucas, Silvia; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC
    This work presents an etched single-mode - multimode - single-mode structure that detects the solid-to-liquid change of state of the water due to an increased refractive index sensitivity within the 1.308 - 1.321 RIU range
  • PublicationOpen Access
    Fiber-based label-free D-dimer detection for early diagnosis of venous thromboembolism
    (SPIE, 2020) Zubiate Orzanco, Pablo; Urrutia Azcona, Aitor; Ruiz Zamarreño, Carlos; Fernández Irigoyen, Joaquín; Giannetti, Ambra; Baldini, Francesco; Díaz Lucas, Silvia; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Santamaría Martínez, Enrique; Del Villar, Ignacio; Chiavaioli, Francesco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    D-dimer is a useful diagnostic biomarker for deep vein thrombosis or pulmonary embolism, collectively referred to as venous thromboembolism (VTE). The ability to detect in real-time the amount of D-dimer with a fast and reliable method is a key step to anticipate the appearance of these diseases. The combination of fiber-optic-based platforms for biosensing with the nanotechnologies is opening up the chance for the development of in situ, portable, lightweight, versatile, reliable and high-performance optical sensing devices towards lab-on-fiber technology. The generation of lossy mode resonances (LMRs) by means of the deposition of nm-thick absorbing metal-oxide films on special geometric-modified fibers allows measuring precisely and accurately surface refractive index changes, which are due to the binding interaction between a biological recognition element and the analyte under investigation. This approach enhances the light-matter interaction in a strong way, thus turning out to be more sensitive compared to other optical technology platforms, such as fiber gratings or surface plasmon resonance. Here, the results of a highly specific and sensitive biosensor for the detection of D-dimer based on LMR in fiber-optics are presented by monitoring in real-time the shift of the LMR related to the biomolecule interactions thanks to a conventional wavelength-interrogation system and an ad-hoc developed microfluidics. A detection limit of 100 ng/mL, a value 5-fold below the clinical cutoff value, has been attained for D-dimer spiked in human serum. The comparison of the results achieved with proteomics-based methodologies, which allows for the identification of betaand gamma-chains of fibrinogen, demonstrates the ability of our platform to specifically (>90%) recognize D-dimer.
  • PublicationOpen Access
    Single-mode-multimode-single-mode fiber (SMS): exploring environmental sensing capabilities
    (IEEE, 2024-08-16) Díaz Lucas, Silvia; Armendáriz Ballesteros, Mikel; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    In this paper, we study the environmental sensing capabilities of a Single-Mode-Multimode-Single-Mode (SMS) fiber in a simple low-cost configuration. SMS fibers exhibit sensitivity to temperature, humidity, refractive index and strain, making them suitable for numerous applications in telecommunications, environmental monitoring, and more. Experimental results demonstrate that the sensor achieves a maximum temperature sensitivity of 4.53 nm/°C. Additionally, SMS fibers can also work as humidity sensors by absorbing or releasing moisture, leading to variations in the refractive index. Monitoring these changes allows for precise humidity measurements, with a sensitivity of 0.1548 nm/%RH. Moreover, SMS fibers show a refractive index sensitivity of 39.65 nm/RIU and strain sensitivities as high as 1.062 nm/¿¿, indicating good performance.
  • PublicationOpen Access
    Initiative to increment the number of women in STEM degrees: women, science and technology chair of the Public University of Navarre
    (IEEE, 2020) Aranguren Garacochea, Patricia; San Martín Biurrun, Idoia; Catalán Ros, Leyre; Martínez Ramírez, Alicia; Jurío Munárriz, Aránzazu; Díaz Lucas, Silvia; Pérez Artieda, Miren Gurutze; Gómez Fernández, Marisol; Barrenechea Tartas, Edurne; Estadística, Informática y Matemáticas; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Estatistika, Informatika eta Matematika; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The Public University of Navarre joined with Navarre Government has created the Women, Science and Technology Chair. This chair arises due to the plummeting tendency of the percentage of women in STEM degrees with the aim of reversing this trend. The programme of activities is defined throughout this contribution by six activities: a Theatre Play, a Poster Award on Final Degree/Masters Project, The 1st Week of Women, Science and Technology, the Promotion of Technical Degrees in schools and high-schools, a Workshop about Gender Stereotypes and the Fostering of Women among Science and Environment. Each activity gained great success and the preset goals were highly accomplished, especially, the 1st Week of Women, Science and Technology activity. The latter achieved a great success both in participation and in repercussion, contributing to visualize the role of women in science and technology.
  • PublicationOpen Access
    Resilient amplified double ring optical networks to multiplex optical fibre sensors
    (IEEE / OSA, 2009) Fernández Vallejo, Montserrat; Pérez Herrera, Rosa Ana; Elosúa Aguado, César; Díaz Lucas, Silvia; Urquhart, Paul; Bariáin Aisa, Cándido; López-Amo Sáinz, Manuel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    We report the experimental demonstration of two configurations of an amplified optical fibre double ring network for the multiplexing of sensors. The networks are designed to be inherently resilient to fibre failures because they enable simultaneous interrogation of all the optical fibre sensors using both rings. The first design demonstrates the feasibility of the so called 'dedicated protection' and the second one 'shared protection' for fibre optic intensity sensors. Raman amplification is used to overcome the losses of the couplers used in the rings, providing power transparency. The first network uses Raman amplification in both constituent rings but in the second one Raman pumping is activated only when a fibre failure occurs. We demonstrate how the topology allows the received powers from the sensors to be equalized.
  • PublicationOpen Access
    Monitoring of water freeze-thaw cycle by means of an etched single-mode - multimode - single-mode fiber-optic refractometer
    (IEEE, 2023) Socorro Leránoz, Abián Bentor; Aginaga Etxamendi, Concepción Isabel; Díaz Lucas, Silvia; Urrutia Azcona, Aitor; Del Villar, Ignacio; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    As an alternative to the different technologies that permit the detection of in-situ ice formation on different surfaces, this contribution proposes the design of an etched single-mode – multimode – single-mode (E-SMS) fiber-optic-based structure as a multimode interference refractometer. This sensor provides enhanced properties with respect to a basic SMS structure, including a higher sensitivity and periodical interferometry bands that can measure surrounding refractive indices with repeatability and robustness. Since ice and water refractive indices are sufficiently different, this structure has been used to detect the freezing - thawing process of water taking place inside a freezer between -20°C and +20°C. Also, this work intends to show a proof of concept of a simple technology that can be applied in different situations, such as in smart cities, avionics, structural health monitoring or even to avoid a cold chain breakage. Inside, novel developments to better understand the working operation of the E-SMS structure are shown, together with a study on how to correlate optical and thermal measurements from a refractive index point of view.
  • PublicationOpen Access
    Sensitivity enhancement in low cutoff wavelength long-period fiber gratings by cladding diameter reduction
    (MDPI, 2017) Del Villar, Ignacio; Partridge, Matthew; Rodríguez Rodríguez, Wenceslao Eduardo; Fuentes Lorenzo, Omar; Socorro Leránoz, Abián Bentor; Díaz Lucas, Silvia; Corres Sanz, Jesús María; James, Stephen; Tatam, Ralph; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Gobierno de Navarra / Nafarroako Gobernua: 2017/PI044
    The diameter of long-period fiber gratings (LPFGs) fabricated in optical fibers with a low cutoff wavelength was be reduced by hydrofluoric acid etching, enhancing the sensitivity to refractive index by more than a factor of 3, to 2611 nm/refractive index unit in the range from 1.333 to 1.4278. The grating period selected for the LPFGs allowed access to the dispersion turning point at wavelengths close to the visible range of the optical spectrum, where optical equipment is less expensive. As an example of an application, a pH sensor based on the deposition of a polymeric coating was analyzed in two situations: with an LPFG without diameter reduction and with an LPFG with diameter reduction. Again, a sensitivity increase of a factor of near 3 was obtained, demonstrating the ability of this method to enhance the sensitivity of thin-film-coated LPFG chemical sensors.
  • PublicationOpen Access
    Comparison of wavelength-division-multiplexed distributed fiber Raman amplifier networks for sensors
    (Optical Society of America, 2006) Díaz Lucas, Silvia; López-Amo Sáinz, Manuel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    A novel distributed fiber Raman amplified star topology used for optical sensor wavelength-division multiplexing is proposed. The performance of this star configuration is compared to an optically amplified bus topology. The two different network topologies are compared and demonstrated experimentally and theoretically as means of gathering information from four wavelength-division-multiplexed photonic sensors. We report how the star configuration yields better signal-to-noise ratios than the bus topology. Furthermore, this improvement is made without increasing the complexity of the regular star topologies.