Echeverría Garín, Irache

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Echeverría Garín

First Name

Irache

person.page.departamento

Agronomía, Biotecnología y Alimentación

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Multi-platform detection of small ruminant lentivirus antibodies and provirus as biomarkers of production losses
    (Frontiers Media, 2020) Echeverría Garín, Irache; Miguel, Ricardo de; Pablo Maiso, Lorena de; Glaría Ezquer, Idoia; Benito, Alfredo A.; Blas, Ignacio de; Andrés Cara, Damián de; Luján, Lluís; Reina Arias, Ramsés; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    Small ruminant lentiviruses (SRLVs) are endemic in most areas of Europe, causing a chronic infection and a multisystemic disease affecting the udder, carpal joints, lungs, and central nervous system. Due to the lack of treatments and protective vaccination strategies, infection control is focused on the identification of infected animals through serological or molecular techniques. However, antigenic and genetic heterogeneity of SRLVs represent a clear drawback for diagnosis. Infected animals may present lower animal production parameters such as birth weight or milk production and quality, depending on productive systems considered and, likely, to the diagnostic method applied. In this study, four sheep flocks dedicated to dairy or meat production were evaluated using three different ELISA and two PCR strategies to classify animal population according to SRLV infection status. Productive parameters were recorded along one whole lactation or reproductive period and compared between positive and negative animals. SRLV was present in 19% of the total population, being unequally distributed in the different flocks. Less than half of the infected animals were detected by a single diagnostic method, highlighting the importance of combining different diagnostic techniques. Statistical analysis employing animal classification using all the diagnostic methods associated lambing size, lamb weight at birth, and daily weight gain with SRLV infection status in meat flocks. Milk production, somatic cell count, fat, and protein content in the milk were associated with SRLV infection in dairy flocks, to a greater extent in the flock showing higher seroprevalence. A multi-platform SRLV diagnostic strategy was useful for ensuring correct animal classification, thus validating downstream studies investigating production traits.
  • PublicationOpen Access
    Replication of small ruminant lentiviruses in aluminum hydroxide-induced granulomas in sheep: a potential new factor for viral dissemination
    (American Society for Microbiology, 2021) Echeverría Garín, Irache; Miguel, Ricardo de; Asín, Javier; Rodríguez Largo, Ana; Fernández, Antonio; Pérez, Marta María; Andrés Cara, Damián de; Luján, Lluís; Reina Arias, Ramsés; Ciencias; Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Aluminum (Al)-based salts are widely used adjuvants in ruminants and other species to strengthen the immune response elicited against vaccine antigen(s). However, they can lead to the formation of long-lasting granulomas composed of abundant activated macrophages. Small ruminant lentiviruses (SRLV) are widely distributed macrophage-tropic retroviruses that cause persistent infections in sheep and goats. Infected monocytes/macrophages and dendritic cells establish an inflammatory microenvironment that eventually leads to clinical manifestations. The aim of this work was to study the effect of Al-induced granulomas in the replication and pathogenesis of SRLV. Eleven adult, naturally SRLV-infected sheep showing clinical arthritis were distributed in vaccine (n = 6), adjuvant-only (n = 3), and control (n = 2) groups and inoculated with commercial Al-based vaccines, Al hydroxide adjuvant alone, or phosphate-buffered saline, respectively. In vitro studies demonstrated viral replication in Al-induced granulomas in 5 out of 10 sheep. Immunohistochemistry (IHC) evinced granular, intracytoplasmic SRLV presence in macrophages within granulomas. Viral sequences obtained from granulomas, blood monocytes, and other tissues were highly similar in most animals, suggesting virus circulation among body compartments. However, notable differences between isolated strains in granulomas and other tissues in specific animals were also noted. Interestingly, the B2 subtype was the most commonly found SRLV genotype, reaching a wider body distribution than previously described. Recombination events between genotypes B2 and A3 along the gag region were identified in two sheep. Our results indicate that Al-hydroxide-derived granulomas may represent an ideal compartment for SRLV replication, perhaps altering natural SRLV infection by providing a new, suitable target tissue. IMPORTANCE Granulomas are inflammation-derived structures elicited by foreign bodies or certain infections. Aluminum adjuvants included in vaccines induce granulomas in many species. In sheep, these are persistent and consist of activated macrophages. Small ruminant lentiviruses (SRLV), which are macrophage-tropic lentiviruses, cause a chronic wasting disease affecting animal welfare and production. Here, we studied the occurrence of SRLV in postvaccination granulomas retrieved from naturally infected ewes after vaccination or inoculation with aluminum only. SRLV infection was confirmed in granulomas by identification of viral proteins, genomic fragments, and enzymatic activity. The infecting SRLV strain, previously found exclusively in carpal joints, reached the central nervous system, suggesting that occurrence of SRLV in postvaccination granulomas may broaden tissue tropism. SRLV recombination was detected in inoculated animals, a rare event in sheep lentiviruses. Potentially, virus-host interactions within granulomas may modify viral pathogenesis and lead to more widespread infection.