García Fernández, Nuria
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
García Fernández
First Name
Nuria
person.page.departamento
Producción Agraria
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Multiparametric renal magnetic resonance imaging: a reproducibility study in renal allografts with stable function(Wiley, 2023) Echeverría Chasco, Rebeca; Martín Moreno, Paloma L.; Vidorreta, Marta; Aramendía Vidaurreta, Verónica; Cano, David; Villanueva Larre, Arantxa; Bastarrika, Gorka; Fernández Seara, María A.; García Fernández, Nuria; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenMonitoring renal allograft function after transplantation is key for the early detection of allograft impairment, which in turn can contribute to preventing the loss of the allograft. Multiparametric renal MRI (mpMRI) is a promising noninvasive technique to assess and characterize renal physiopathology; however, few studies have employed mpMRI in renal allografts with stable function (maintained function over a long time period). The purposes of the current study were to evaluate the reproducibility of mpMRI in transplant patients and to characterize normal values of the measured parameters, and to estimate the labeling efficiency of Pseudo-Continuous Arterial Spin Labeling (PCASL) in the infrarenal aorta using numerical simulations considering experimental measurements of aortic blood flow profiles. The subjects were 20 transplant patients with stable kidney function, maintained over 1 year. The MRI protocol consisted of PCASL, intravoxel incoherent motion, and T1 inversion recovery. Phase contrast was used to measure aortic blood flow. Renal blood flow (RBF), diffusion coefficient (D), pseudo-diffusion coefficient (D*), flowing fraction (f), and T1 maps were calculated and mean values were measured in the cortex and medulla. The labeling efficiency of PCASL was estimated from simulation of Bloch equations. Reproducibility was assessed with the within-subject coefficient of variation, intraclass correlation coefficient, and Bland-Altman analysis. Correlations were evaluated using the Pearson correlation coefficient. The significance level was p less than 0.05. Cortical reproducibility was very good for T1, D, and RBF, moderate for f, and low for D*, while medullary reproducibility was good for T1 and D. Significant correlations in the cortex between RBF and f (r = 0.66), RBF and eGFR (r = 0.64), and D* and eGFR (r = 0.57) were found. Normal values of the measured parameters employing the mpMRI protocol in kidney transplant patients with stable function were characterized and the results showed good reproducibility of the techniques.Publication Open Access Advancing ASL kidney image registration: a tailored pipeline with VoxelMorph(Springer, 2025-01-31) Oyarzun Domeño, Anne; Cia Alonso, Izaskun; Echeverría Chasco, Rebeca; Fernández Seara, María A.; Martín Moreno, Paloma L.; García Fernández, Nuria; Bastarrika, Gorka; Navallas Irujo, Javier; Villanueva Larre, Arantxa; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako GobernuaIn clinical renal assessment, image registration plays a pivotal role, as patient movement during data acquisition can significantly impede image post-processing and the accurate estimation of hemodynamic parameters. This study introduces a deep learning-based image registration framework specifically for arterial spin labeling (ASL) imaging. ASL is a magnetic resonance imaging technique that modifies the longitudinal magnetization of blood perfusing the kidney using a series of radiofrequency pulses combined with slice-selective gradients. After tagging the arterial blood, label images are captured following a delay, allowing the tagged blood bolus to enter the renal tissue, while control images are acquired without tagging the arterial spins. Given that perfusion maps are generated at the pixel level by subtracting control images from label images and considering the relatively small signal intensity difference, precise alignment of these images is crucial to minimize motion artefacts and prevent significant errors in perfusion calculations. Moreover, due to the extended ASL acquisition times and the anatomical location of the kidneys, renal images are often susceptible to pulsation, peristalsis, and breathing motion. These motion-induced noises and other instabilities can adversely affect ASL imaging outcomes, making image registration essential. However, research on renal MRI registration, particularly with respect to learning-based techniques, remains limited, with even less focus on renal ASL. Our study proposes a learning-based image registration approach that builds upon VoxelMorph and introduces groupwise inference as a key enhancement. The dataset includes 2448 images of transplanted kidneys (TK) and 2456 images of healthy kidneys (HK). We compared the automatic image registration results with the widely recognized optimization method Elastix. The model’s performance was evaluated using the mean structural similarity index (MSSIM), normalized correlation coefficient (NCC), temporal signal-tonoise ratio (TSNR) of the samples, and the mean cortical signal (CSIM) in perfusion-weighted images, thereby extending the evaluation beyond traditional similarity-based metrics. Our method achieved superior image registration performance, with peak NCC (0.987 ± 0.006) and MSSIM (0.869 ± 0.048) values in the kidney region, significantly surpassing Elastix and the unregistered series (p\ 0.05) on TK and HK datasets. Regularization analysis showed that higher k values (1, 2) produced smoother deformation fields, while moderate k values (0.5, 0.9) balanced smoothness and detail, maintaining low non-positive Jacobian percentages (\1%) comparable to Elastix. Additionally, our method improved CSIM by 14.3% (2.304 ± 1.167) and TSNR by 13.1% (3.888 ± 2.170) in TK, and achieved up to 13.2% (CSIM) and 29.8% (TSNR) enhancements in HK, demonstrating robustness and improved signal quality across datasets and acquisition techniques.