Person:
Bitarte Manzanal, Nerea

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Bitarte Manzanal

First Name

Nerea

person.page.departamento

Instituto de Agrobiotecnología (IdAB)

person.page.instituteName

ORCID

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Base pairing interaction between 5′- and 3′-UTRs controls icaR mRNA translation in Staphylococcus aureus
    (Public Library of Science, 2013) Ruiz de los Mozos Aliaga, Igor; Vergara Irigaray, Marta; Segura, Víctor; Villanueva San Martín, Maite; Bitarte Manzanal, Nerea; Saramago, Margarida; Domingues, Susana; Arraiano, Cecilia M.; Fechter, Pierre; Romby, Pascale; Valle Turrillas, Jaione; Solano Goñi, Cristina; Lasa Uzcudun, Íñigo; Toledo Arana, Alejandro; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    The presence of regulatory sequences in the 39 untranslated region (39-UTR) of eukaryotic mRNAs controlling RNA stability and translation efficiency is widely recognized. In contrast, the relevance of 39-UTRs in bacterial mRNA functionality has been disregarded. Here, we report evidences showing that around one-third of the mapped mRNAs of the major human pathogen Staphylococcus aureus carry 39-UTRs longer than 100-nt and thus, potential regulatory functions. We selected the long 39-UTR of icaR, which codes for the repressor of the main exopolysaccharidic compound of the S. aureus biofilm matrix, to evaluate the role that 39-UTRs may play in controlling mRNA expression. We showed that base pairing between the 39- UTR and the Shine-Dalgarno (SD) region of icaR mRNA interferes with the translation initiation complex and generates a double-stranded substrate for RNase III. Deletion or substitution of the motif (UCCCCUG) within icaR 39-UTR was sufficient to abolish this interaction and resulted in the accumulation of IcaR repressor and inhibition of biofilm development. Our findings provide a singular example of a new potential post-transcriptional regulatory mechanism to modulate bacterial gene expression through the interaction of a 39-UTR with the 59-UTR of the same mRNA.
  • PublicationOpen Access
    Noncontiguous operon is a genetic organization for coordinating bacterial gene expression
    (National Academy of Sciences, 2019) Sáenz Lahoya, S.; Bitarte Manzanal, Nerea; García, Beñat; Burgui Erice, Saioa; Vergara Irigaray, Marta; Valle Turrillas, Jaione; Solano Goñi, Cristina; Toledo Arana, Alejandro; Lasa Uzcudun, Íñigo; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Bacterial genes are typically grouped into operons defined as clusters of adjacent genes encoding for proteins that fill related roles and are transcribed into a single polycistronic mRNA molecule. This simple organization provides an efficient mechanism to coordinate the expression of neighboring genes and is at the basis of gene regulation in bacteria. Here, we report the existence of a higher level of organization in operon structure that we named noncontiguous operon and consists in an operon containing a gene(s) that is transcribed in the opposite direction to the rest of the operon. This transcriptional architecture is exemplified by the genes menE-menC-MW1733-ytkD-MW1731 involved in menaquinone synthesis in the major human pathogen Staphylococcus aureus. We show that menE-menC-ytkD-MW1731 genes are transcribed as a single transcription unit, whereas the MW1733 gene, located between menC and ytkD, is transcribed in the opposite direction. This genomic organization generates overlapping transcripts whose expression is mutually regulated by transcriptional interference and RNase III processing at the overlapping region. In light of our results, the canonical view of operon structure should be revisited by including this operon arrangement in which cotranscription and overlapping transcription are combined to coordinate functionally related gene expression.