Person:
Burgui Erice, Saioa

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Burgui Erice

First Name

Saioa

person.page.departamento

Agronomía, Biotecnología y Alimentación

person.page.instituteName

ORCID

0000-0002-3601-7221

person.page.upna

810416

Name

Search Results

Now showing 1 - 9 of 9
  • PublicationOpen Access
    A DIVA vaccine strain lacking RpoS and the secondary messenger c-di-GMP for protection against salmonellosis in pigs
    (BioMed Central, 2020) Gil Puig, Carmen; Latasa Osta, Cristina; García Ona, Enrique; Lázaro, Isidro; Labairu, Javier; Echeverz Sarasúa, Maite; Burgui Erice, Saioa; García Martínez, Begoña; Lasa Uzcudun, Íñigo; Solano Goñi, Cristina; Ciencias de la Salud; Osasun Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua, IIM 13329.RI1
    Salmonellosis is the second most common food-borne zoonosis in the European Union, with pigs being a major reservoir of this pathogen. Salmonella control in pig production requires multiple measures amongst which vaccination may be used to reduce subclinical carriage and shedding of prevalent serovars, such as Salmonella enterica serovar Typhimurium. Live attenuated vaccine strains offer advantages in terms of enhancing cell mediated immunity and allowing inoculation by the oral route. However, main failures of these vaccines are the limited cross-protection achieved against heterologous serovars and interference with serological monitoring for infection. We have recently shown that an attenuated S. Enteritidis strain (ΔXIII) is protective against S. Typhimurium in a murine infection model. ΔXIII strain harbours 13 chromosomal deletions that make it unable to produce the sigma factor RpoS and synthesize cyclic-di-GMP (c-di-GMP). In this study, our objectives were to test the protective effects of ΔXIII strain in swine and to investigate if the use of ΔXIII permits the discrimination of vaccinated from infected pigs. Results show that oral vaccination of pre-weaned piglets with ΔXIII cross-protected against a challenge with S. Typhimurium by reducing faecal shedding and ileocaecal lymph nodes colonization, both at the time of weaning and slaughter. Vaccinated pigs showed neither faecal shedding nor tissue persistence of the vaccine strain at weaning, ensuring the absence of ΔXIII strain by the time of slaughter. Moreover, lack of the SEN4316 protein in ΔXIII strain allowed the development of a serological test that enabled the differentiation of infected from vaccinated animals (DIVA).
  • PublicationOpen Access
    Evaluation of new strategies to combat Staphylococcus aureus biofilm mediated infections in medical devices
    (2018) Burgui Erice, Saioa; Valle Turrillas, Jaione; Lasa Uzcudun, Íñigo; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua, IIQ14066.RI
    Según recoge el estudio EPINE-EPS orientado a la recogida de datos de prevalencia de las infecciones nosocomiales en España, en el año 2017 alrededor de 62.000 pacientes adquirieron algún tipo de infección nosocomial durante su estancia en un centro hospitalario. La práctica médica actual resulta impensable sin la utilización de distintos dispositivos implantables tales como válvulas, catéteres venosos centrales, catéteres urinarios o prótesis articulares para el tratamiento de los pacientes. A pesar de todos sus beneficios, un aspecto negativo asociado a la utilización de dispositivos médicos invasivos es un mayor riesgo a sufrir infecciones por microorganismos que crecen adheridos a su superficie. Las infecciones relacionadas con dispositivos médicos suponen un porcentaje creciente y significativo de las infecciones nosocomiales, y provocan un incremento del gasto sanitario, así como una mayor morbilidad y mortalidad del paciente. Aunque, una gran variedad de microorganismos puede causar infecciones asociadas a implantes, Staphylococcus aureus y S. epidermidis ocupan un puesto muy destacado entre los agentes que con mayor frecuencia causan infecciones asociadas a dispositivos médicos. Su presencia en la piel humana facilita sus posibilidades de alcanzar la superficie del implante y por otro lado su elevada capacidad para adherirse a la superficie de materiales abióticos les permite adherirse irreversiblemente a su superficie. Una vez que la bacteria se ha adherido a la superficie, las bacterias comienzan a dividirse y secretar una matriz extracelular que las rodea formando lo que comúnmente se conoce como biofilm. La formación de biofilm incrementa la resistencia de las bacterias a los tratamientos antibióticos y a la acción del sistema inmune. En el caso de las infecciones producidas por S. aureus esta situación se agrava por la existencia de cepas resistentes a múltiples antibióticos, como meticilina y antibióticos glucopéptidos. En esta tesis hemos trabajado en distintas estrategias que podrían ayudar a reducir la incidencia de estas infecciones. En el primer capítulo, hemos estudiado cómo la modificación de la topografía de la superficie del biomaterial del implante médico puede reducir la adhesión bacteriana y la formación de biofilms. Para ello, hemos utilizado una metodología laser de interferencia directa (DLIP) para modificar la topografía de la superficie de poliestireno a escala submicrométrica. Los resultados han revelado que las estructuras micrométricas tridimensionales tienen un profundo impacto sobre la adhesión bacteriana. Los patrones tipo línea y pilar mejoran la adhesión de S. aureus, mientras que una microtopografía laminar irregular reduce la adhesión de S. aureus tanto en condiciones de cultivo estático, como de flujo continuo. Además, las superficies laminares mantienen la capacidad de inhibir la adhesión de S. aureus tanto cuando la superficie se cubre de proteínas del suero humano tras su implantación. En el segundo capítulo, nos hemos interesado en estudiar el papel que juegan los sistemas de dos componentes (TCS) de S. aureus en su adaptación para colonizar y sobrevivir en la superficie de los implantes médicos. Utilizando un modelo murino de infección por catéter in vivo y una colección de mutantes en cada uno de los TCS no esencial de S. aureus, investigamos el requerimiento de cada TCS para colonizar el catéter implantado. Entre los 15 mutantes en TCS no esenciales, el mutante arlRS ha exhibido la deficiencia más importante en su capacidad para colonizar catéteres implantados. Además, el mutante arlRS ha sido el único que ha presentado un déficit importante en la producción de PNAG, el principal exopolisacárido de la matriz del biofilm de S. aureus cuya síntesis está mediada por el locus icaADBC. Nuestros resultados indican que la regulación de la síntesis de PNAG por ArlRS se produce a través de la represión de IcaR, un represor transcripcional de la expresión del operón icaADBC. Así, la deficiencia en la colonización del catéter se restauraba cuando el mutante arlRS se complementó con el operón icaADBC. Estos resultados indican que ArlRS es un TCS clave para la formación de biofilm en la superficie de los catéteres implantados y que la activación de la producción del exopolisacáridos PNAG es, entre los muchos rasgos controlados por el sistema ArlRS, uno de los que mas contribuyen a la colonización del catéter. Por último, en el tercer capítulo abordamos la prevención de la formación de biofilm de S. aureus mediante el desarrollo de vacunas antibiofilm. Bajo la premisa de que en una infección causada por bacterias creciendo en biofilm, la interfaz entre el huésped y la bacteria es la matriz extracelular, analizamos el potencial de proteínas extracelulares secretadas a la matriz del biofilm para inducir una respuesta inmune protectora contra infecciones por S. aureus. Mediante el uso de técnicas proteómicas, caracterizamos los exoproteomas de la matriz del biofilm producido por dos cepas clínicas de S. aureus que producen biofilms de naturaleza exopolisacáridica o proteica. Los resultados han mostrado que con independencia de la naturaleza de la matriz del biofilm, existe un núcleo común de proteínas secretadas a la matriz de ambos tipos de biofilms. La inmunización con un extracto de exoproteínas de la matriz del biofilm induce una respuesta inmune humoral y la producción de interleuquinas IL-10 e IL-17 en un modelo de infección de ratón. Los anticuerpos producidos promueven la opsonofagocitosis y la muerte de S. aureus. Como consecuencia de la inducción del sistema inmune, los ratones inmunizados presentaban un recuento significativamente menor de bacterias en la superficie del implante y en el tejido circundante utilizando un modelo de infección con malla intraperitoneal. En conjunto, los datos de este trabajo muestran el potencial que las exoproteínas de la matriz del biofilm pueden tener como vacuna multivalente frente a infecciones causadas por biofilms de S. aureus.
  • PublicationOpen Access
    In vitro modeling of polyclonal infection dynamics within the human airways by Haemophilus influenzae differential fluorescent labeling
    (American Society for Microbiology, 2023) Rapún Araiz, Beatriz; Sorzabal-Bellido, Ioritz; Asensio López, Javier; Lázaro-Díez, María; Ariz Galilea, Mikel; Sobejano de la Merced, Carlos; Euba, Begoña; Fernández Calvet, Ariadna; Cortés Domínguez, Iván; Burgui Erice, Saioa; Toledo Arana, Alejandro; Ortiz de Solórzano, Carlos; Garmendia García, Juncal; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    Standardized clinical procedures for antibiotic administration rely on pathogen identification and antibiotic susceptibility testing, often performed on single-colony bacterial isolates. For respiratory pathogens, this could be questionable, as chronic patients may be persistently colonized by multiple clones or lineages from the same bacterial pathogen species. Indeed, multiple strains of nontypeable Haemophilus influenzae, with different antibiotic susceptibility profiles, can be co-isolated from cystic fibrosis and chronic obstructive pulmonary disease sputum specimens. Despite this clinical evidence, we lack information about the dynamics of H. influenzae polyclonal infections, which limits the optimization of therapeutics. Here, we present the engineering and validation of a plasmid toolkit (pTBH, toolbox for Haemophilus), with standardized modules consisting of six reporter genes for fluorescent or bioluminescent labeling of H. influenzae. This plasmid set was independently introduced in a panel of genomically and phenotypically different H. influenzae strains, and two of them were used as a proof of principle to analyze mixed biofilm growth architecture and antibiotic efficacy, and to visualize the dynamics of alveolar epithelial co-infection. The mixed biofilms showed a bilayer architecture, and antibiotic efficacy correlated with the antibiotic susceptibility of the respective single-species strains. Furthermore, differential kinetics of bacterial intracellular location within subcellular acidic compartments were quantified upon co-infection of cultured airway epithelial cells. Overall, we present a panel of novel plasmid tools and quantitative image analysis methods with the potential to be used in a whole range of bacterial host species, assay types, and¿or conditions and generate meaningful information for clinically relevant settings.
  • PublicationRestricted
    Influencia de la velocidad del aire de secado en el contenido y la composición química del aceite esencial Capin-Limón (Cimpobogon citratus (D.C.)stapt)
    (2009) Burgui Erice, Saioa; Moure Gil, José; Escuela Técnica Superior de Ingenieros Agrónomos; Nekazaritza Ingeniarien Goi Mailako Eskola Teknikoa; Tecnología de Alimentos; Elikagaien Teknologia
  • PublicationOpen Access
    Evaluation of a Salmonella strain lacking the secondary messenger c-di-GMP and RpoS as a live oral vaccine
    (Public Library of Science, 2016) Latasa Osta, Cristina; Echeverz Sarasúa, Maite; García Ona, Enrique; Burgui Erice, Saioa; Casares, Noelia; Hervás Stubbs, Sandra; Lasarte, Juan José; Lasa Uzcudun, Íñigo; Solano Goñi, Cristina; García Martínez, Begoña; Gil Puig, Carmen; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIM 13329.RI1
    Salmonellosis is one of the most important bacterial zoonotic diseases transmitted through the consumption of contaminated food, with chicken and pig related products being key reservoirs of infection. Although numerous studies on animal vaccination have been performed in order to reduce Salmonella prevalence, there is still a need for an ideal vaccine. Here, with the aim of constructing a novel live attenuated Salmonella vaccine candidate, we firstly analyzed the impact of the absence of cyclic-di-GMP (c-di-GMP) in Salmonella virulence. Cdi-GMP is an intracellular second messenger that controls a wide range of bacterial processes, including biofilm formation and synthesis of virulence factors, and also modulates the host innate immune response. Our results showed that a Salmonella multiple mutant in the twelve genes encoding diguanylate cyclase proteins that, as a consequence, cannot synthesize c-di-GMP, presents a moderate attenuation in a systemic murine infection model. An additional mutation of the rpoS gene resulted in a synergic attenuating effect that led to a highly attenuated strain, referred to as ΔXIII, immunogenic enough to protect mice against a lethal oral challenge of a S. Typhimurium virulent strain. ΔXIII immunogenicity relied on activation of both antibody and cell mediated immune responses characterized by the production of opsonizing antibodies and the induction of significant levels of IFN-γ, TNF- α, IL-2, IL-17 and IL-10. ΔXIII was unable to form a biofilm and did not survive under desiccation conditions, indicating that it could be easily eliminated from the environment. Moreover, ΔXIII shows DIVA features that allow differentiation of infected and vaccinated animals. Altogether, these results show ΔXIII as a safe and effective live DIVA vaccine
  • PublicationOpen Access
    A systematic evaluation of the two-component systems network reveals that ArlRS is a key regulator of catheter colonization by Staphylococcus aureus
    (Frontiers Media, 2018) Burgui Erice, Saioa; Gil Puig, Carmen; Solano Goñi, Cristina; Lasa Uzcudun, Íñigo; Valle Turrillas, Jaione; Ciencias de la Salud; Osasun Zientziak
    Two-component systems (TCS) are modular signal transduction pathways that allow cells to adapt to prevailing environmental conditions by modifying cellular physiology. Staphylococcus aureus has 16 TCSs to adapt to the diverse microenvironments encountered during its life cycle, including host tissues and implanted medical devices. S. aureus is particularly prone to cause infections associated to medical devices, whose surfaces coated by serum proteins constitute a particular environment. Identification of the TCSs involved in the adaptation of S. aureus to colonize and survive on the surface of implanted devices remains largely unexplored. Here, using an in vivo catheter infection model and a collection of mutants in each non-essential TCS of S. aureus, we investigated the requirement of each TCS for colonizing the implanted catheter. Among the 15 mutants in non-essential TCSs, the arl mutant exhibited the strongest deficiency in the capacity to colonize implanted catheters. Moreover, the arl mutant was the only one presenting a major deficit in PNAG production, the main exopolysaccharide of the S. aureus biofilm matrix whose synthesis is mediated by the icaADBC locus. Regulation of PNAG synthesis by ArlRS occurred through repression of IcaR, a transcriptional repressor of icaADBC operon expression. Deficiency in catheter colonization was restored when the arl mutant was complemented with the icaADBC operon. MgrA, a global transcriptional regulator downstream ArlRS that accounts for a large part of the arlRS regulon, was unable to restore PNAG expression and catheter colonization deficiency of the arlRS mutant. These findings indicate that ArlRS is the key TCS to biofilm formation on the surface of implanted catheters and that activation of PNAG exopolysaccharide production is, among the many traits controlled by the ArlRS system, a major contributor to catheter colonization.
  • PublicationOpen Access
    Evaluation of surface microtopography engineered by direct laser interference for bacterial anti-biofouling
    (2015) Valle Turrillas, Jaione; Burgui Erice, Saioa; Langheinrich, Denise; Gil Puig, Carmen; Solano Goñi, Cristina; Toledo Arana, Alejandro; Helbig, Ralf; Lasagni, Andrés; Lasa Uzcudun, Íñigo; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIQ14066.RI1
    Biofilm formation by bacterial pathogens on the surface of medical and industrial settings is a 25 serious health problem. Modification of the biomaterial surface topography is a promising 26 strategy to prevent bacterial attachment and biofilm development. However, fabrication of 27 functional biomaterials at large scale with periodic network-topology is still problematic. In this 28 study, we use direct laser interference (DLIP), an easily scalable process, to modify polystyrene 29 surface (PS) topography at sub-micrometer scale. The resulting structure surfaces were 30 interrogated for their capacity to prevent adhesion and biofilm formation of the major human 31 pathogen Staphylococcus aureus. The results revealed that three-dimensional micrometer 32 periodic structures on PS have a profound impact on bacterial adhesion capacity. Thus, line- 33 and pillar-like topographical patterns enhanced S. aureus adhesion, whereas complex lamella 34 microtopography reduced S. aureus adhesion both in static and continuous flow culture 35 conditions. Interestingly, lamella-like textured surfaces retained the capacity to inhibit S. aureus 36 adhesion both when the surface is coated with human serum proteins in vitro and when the 37 material is implanted subcutaneously in a foreign-body associated infection model. Our results 38 establish that the DLIP technology can be used to functionalize polymeric surfaces for the 39 inhibition of bacterial adhesion to surfaces.
  • PublicationOpen Access
    Noncontiguous operon is a genetic organization for coordinating bacterial gene expression
    (National Academy of Sciences, 2019) Sáenz Lahoya, S.; Bitarte Manzanal, Nerea; García, Beñat; Burgui Erice, Saioa; Vergara Irigaray, Marta; Valle Turrillas, Jaione; Solano Goñi, Cristina; Toledo Arana, Alejandro; Lasa Uzcudun, Íñigo; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Bacterial genes are typically grouped into operons defined as clusters of adjacent genes encoding for proteins that fill related roles and are transcribed into a single polycistronic mRNA molecule. This simple organization provides an efficient mechanism to coordinate the expression of neighboring genes and is at the basis of gene regulation in bacteria. Here, we report the existence of a higher level of organization in operon structure that we named noncontiguous operon and consists in an operon containing a gene(s) that is transcribed in the opposite direction to the rest of the operon. This transcriptional architecture is exemplified by the genes menE-menC-MW1733-ytkD-MW1731 involved in menaquinone synthesis in the major human pathogen Staphylococcus aureus. We show that menE-menC-ytkD-MW1731 genes are transcribed as a single transcription unit, whereas the MW1733 gene, located between menC and ytkD, is transcribed in the opposite direction. This genomic organization generates overlapping transcripts whose expression is mutually regulated by transcriptional interference and RNase III processing at the overlapping region. In light of our results, the canonical view of operon structure should be revisited by including this operon arrangement in which cotranscription and overlapping transcription are combined to coordinate functionally related gene expression.
  • PublicationOpen Access
    Biofilm matrix exoproteins induce a protective immune response against Staphylococcus aureus biofilm infection
    (American Society for Microbiology, 2014) Gil Puig, Carmen; Solano Goñi, Cristina; Burgui Erice, Saioa; Latasa Osta, Cristina; García Martínez, Begoña; Toledo Arana, Alejandro; Lasa Uzcudun, Íñigo; Valle Turrillas, Jaione; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIQ14066.RI1
    The Staphylococcus aureus biofilm mode of growth is associated with several chronic infections that are very difficult to treat due to the recalcitrant nature of biofilms to clearance by antimicrobials. Accordingly, there is an increasing interest in preventing the formation of S. aureus biofilms and developing efficient antibiofilm vaccines. Given the fact that during a biofilm-associated infection, the first primary interface between the host and the bacteria is the self-produced extracellular matrix, in this study we analyzed the potential of extracellular proteins found in the biofilm matrix to induce a protective immune response against S. aureus infections. By using proteomic approaches, we characterized the exoproteomes of exopolysaccharide-based and proteinbased biofilm matrices produced by two clinical S. aureus strains. Remarkably, results showed that independently of the nature of the biofilm matrix, a common core of secreted proteins is contained in both types of exoproteomes. Intradermal administration of an exoproteome extract of an exopolysaccharide-dependent biofilm induced a humoral immune response and elicited the production of interleukin 10 (IL-10) and IL-17 in mice. Antibodies against such an extract promoted opsonophagocytosis and killing of S. aureus. Immunization with the biofilm matrix exoproteome significantly reduced the number of bacterial cells inside a biofilm and on the surrounding tissue, using an in vivo model of mesh-associated biofilm infection. Furthermore, immunized mice also showed limited organ colonization by bacteria released from the matrix at the dispersive stage of the biofilm cycle. Altogether, these data illustrate the potential of biofilm matrix exoproteins as a promising candidate multivalent vaccine against S. aureus biofilm-associated infections.