Sesma Sara, Mikel
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Sesma Sara
First Name
Mikel
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
4 results
Search Results
Now showing 1 - 4 of 4
Publication Open Access Operador de comparación de elementos multivaluados basado en funciones de equivalencia restringida(Universidad de Málaga, 2021) Castillo López, Aitor; López Molina, Carlos; Fernández Fernández, Francisco Javier; Sesma Sara, Mikel; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaEn este trabajo proponemos un nuevo enfoque del algoritmo de clustering gravitacional basado en lo que Einstein considero su 'mayor error': la constante cosmológica. De manera similar al algoritmo de clustering gravitacional, nuestro enfoque está inspirado en principios y leyes del cosmos, y al igual que ocurre con la teoría de la relatividad de Einstein y la teoría de la gravedad de Newton, nuestro enfoque puede considerarse una generalización del agrupamiento gravitacional, donde, el algoritmo de clustering gravitacional se recupera como caso límite. Además, se desarrollan e implementan algunas mejoras que tienen como objetivo optimizar la cantidad de iteraciones finales, y de esta forma, se reduce el tiempo de ejecución tanto para el algoritmo original como para nuestra versión.Publication Open Access F-homogeneous functions and a generalization of directional monotonicity(Wiley, 2022) Santiago, Regivan; Sesma Sara, Mikel; Fernández Fernández, Francisco Javier; Takáč, Zdenko; Mesiar, Radko; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaA function that takes (Formula presented.) numbers as input and outputs one number is said to be homogeneous whenever the result of multiplying each input by a certain factor (Formula presented.) yields the original output multiplied by that same factor. This concept has been extended by the notion of abstract homogeneity, which generalizes the product in the expression of homogeneity by a general function (Formula presented.) and the effect of the factor (Formula presented.) by an automorphism. However, the effect of parameter (Formula presented.) remains unchanged for all the input values. In this study, we generalize further the condition of abstract homogeneity by introducing (Formula presented.) -homogeneity, which is defined with respect to a family of functions, enabling a different behavior for each of the inputs. Next, we study the properties that are satisfied by this family of functions and, moreover, we link this concept with the condition of directional monotonicity, which is a trendy property in the framework of aggregation functions. To achieve that, we generalize directional monotonicity by (Formula presented.) directional monotonicity, which is defined with respect to a family of functions (Formula presented.) and a family of vectors (Formula presented.). Finally, we show how the introduced concepts could be applied in two different problems of computer vision: a snow detection problem and image thresholding improvement. © 2022 The Authors. International Journal of Intelligent Systems published by Wiley Periodicals LLC.Publication Open Access New classes of the moderate deviation functions(Springer Nature, 2021) Špirková, Jana; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Sesma Sara, Mikel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaAt present, in the field of aggregation of various input values, attention is focused on the construction of aggregation functions using other functions that can affect the resulting aggregated value. This resulting value should characterize the properties of the individual input values as accurately as possible. Attention is also paid to aggregation using the so-called moderate deviation function. Using this function in aggregation ensures that all properties of aggregation functions are preserved. This work offers constructions of the moderate deviation functions using negations and automorphisms on the symmetric interval [−1, 1] and a general closed interval [a, b] ⊂ [−∞, ∞].Publication Open Access Interval subsethood measures with respect to uncertainty for the interval-valued fuzzy setting(Atlantis Press, 2020) Pekala, Barbara; Bentkowska, Urszula; Sesma Sara, Mikel; Fernández Fernández, Francisco Javier; Lafuente López, Julio; Altalhi, A. H.; Knap, Maksymilian; Bustince Sola, Humberto; Pintor Borobia, Jesús María; Estatistika, Informatika eta Matematika; Ingeniaritza; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; IngenieríaIn this paper, the problem of measuring the degree of subsethood in the interval-valued fuzzy setting is addressed. Taking into account the widths of the intervals, two types of interval subsethood measures are proposed. Additionally, their relation and main properties are studied. These developments are made both with respect to the regular partial order of intervals and with respect to admissible orders. Finally, some construction methods of the introduced interval subsethood measures with the use interval-valued aggregation functions are examined.