Sesma Sara, Mikel
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Sesma Sara
First Name
Mikel
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
27 results
Search Results
Now showing 1 - 10 of 27
Publication Open Access Linking mathematical morphology and L-fuzzy concepts(World Scientific, 2017) Alcalde, Cristina; Burusco Juandeaburre, Ana; Bustince Sola, Humberto; Fuentes González, Ramón; Sesma Sara, Mikel; Automatika eta Konputazioa; Institute of Smart Cities - ISC; Automática y ComputaciónIn this paper we study the relation between L-fuzzy morphology and L-fuzzy concepts over complete lattices. In particular, we show how the erosion and dilation operators of the former can be understood in terms of the derivation operators of the latter, even when the set of objects is different from the set of attributes.Publication Open Access Enhancing DreamBooth with LoRA for generating unlimited characters with stable diffusion(IEEE, 2024-09-09) Pascual Casas, Rubén; Maiza Coupin, Adrián Mikel; Sesma Sara, Mikel; Paternain Dallo, Daniel; Galar Idoate, Mikel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA2023-11377This paper addresses the challenge of generating unlimited new and distinct characters that encompass the style and shared visual characteristics of a limited set of human designed characters. This is a relevant problem in the audiovisual industry, as the ability to rapidly produce original characters that adhere to specific characteristics greatly increases the possibilities in the production of movies, series, or video games. Our solution is built upon DreamBooth, a widely extended fine-tuning method for text-to-image models. We propose an adaptation focusing on two main challenges: the impracticality of relying on detailed image prompts for character description and the few-shot learning scenario with a limited set of characters available for training. To solve these issues, we introduce additional character-specific tokens to DreamBooth training and remove its class-specific regularization dataset. For an unlimited generation of characters, we propose the usage of random tokens and random embeddings. This proposal is tested on two specialized datasets and the results shows our method¿s capability to produce diverse characters that adhere to a style and visual characteristics. An ablation study to analyze the contributions of the proposed modifications is also developed.Publication Open Access Local properties of strengthened ordered directional and other forms of monotonicity(Springer, 2019) Sesma Sara, Mikel; Miguel Turullols, Laura de; Mesiar, Radko; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA13In this study we discuss some of the recent generalized forms of monotonicity, introduced in the attempt of relaxing the monotonicity condition of aggregation functions. Specifically, we deal with weak, directional, ordered directional and strengthened ordered directional monotonicity. We present some of the most relevant properties of the functions that satisfy each of these monotonicity conditions and, using the concept of pointwise directional monotonicity, we carry out a local study of the discussed relaxations of monotonicity. This local study enables to highlight the differences between each notion of monotonicity. We illustrate such differences with an example of a restricted equivalence function.Publication Open Access New classes of the moderate deviation functions(Springer Nature, 2021) Špirková, Jana; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Sesma Sara, Mikel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaAt present, in the field of aggregation of various input values, attention is focused on the construction of aggregation functions using other functions that can affect the resulting aggregated value. This resulting value should characterize the properties of the individual input values as accurately as possible. Attention is also paid to aggregation using the so-called moderate deviation function. Using this function in aggregation ensures that all properties of aggregation functions are preserved. This work offers constructions of the moderate deviation functions using negations and automorphisms on the symmetric interval [−1, 1] and a general closed interval [a, b] ⊂ [−∞, ∞].Publication Open Access Curve-based monotonicity: a generalization of directional monotonicity(Taylor & Francis, 2019) Roldán López de Hierro, Antonio Francisco; Sesma Sara, Mikel; Špirková, Jana; Lafuente López, Julio; Pradera, Ana; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasIn this work we propose a generalization of the notion of directional monotonicity. Instead of considering increasingness or decreasingness along rays, we allow more general paths defined by curves in the n-dimensional space. These considerations lead us to the notion of α-monotonicity, where α is the corresponding curve. We study several theoretical properties of α-monotonicity and relate it to other notions of monotonicity, such as weak monotonicity and directional monotonicity.Publication Open Access Operador de comparación de elementos multivaluados basado en funciones de equivalencia restringida(Universidad de Málaga, 2021) Castillo López, Aitor; López Molina, Carlos; Fernández Fernández, Francisco Javier; Sesma Sara, Mikel; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaEn este trabajo proponemos un nuevo enfoque del algoritmo de clustering gravitacional basado en lo que Einstein considero su 'mayor error': la constante cosmológica. De manera similar al algoritmo de clustering gravitacional, nuestro enfoque está inspirado en principios y leyes del cosmos, y al igual que ocurre con la teoría de la relatividad de Einstein y la teoría de la gravedad de Newton, nuestro enfoque puede considerarse una generalización del agrupamiento gravitacional, donde, el algoritmo de clustering gravitacional se recupera como caso límite. Además, se desarrollan e implementan algunas mejoras que tienen como objetivo optimizar la cantidad de iteraciones finales, y de esta forma, se reduce el tiempo de ejecución tanto para el algoritmo original como para nuestra versión.Publication Open Access Strengthened ordered directional and other generalizations of monotonicity for aggregation functions(Springer, 2018) Sesma Sara, Mikel; Miguel Turullols, Laura de; Lafuente López, Julio; Barrenechea Tartas, Edurne; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaA tendency in the theory of aggregation functions is the generalization of the monotonicity condition. In this work, we examine the latest developments in terms of different generalizations. In particular, we discuss strengthened ordered directional monotonicity, its relation to other types of monotonicity, such as directional and ordered directional monotonicity and the main properties of the class of functions that are strengthened ordered directionally monotone. We also study some construction methods for such functions and provide a characterization of usual monotonicity in terms of these notions of monotonicity.Publication Open Access Directional monotonicity of multidimensional fusion functions with respect to admissible orders(Elsevier, 2023-03-09) Sesma Sara, Mikel; Bustince Sola, Humberto; Mesiar, Radko; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA25-2022The notion of directional monotonicity emerged as a relaxation of the monotonicity condition of aggregation functions. As the extension of aggregation functions to fuse more complex information than numeric data, directional monotonicity was extended to the framework of multidimensional data, with respect to the product order, which is a partial order. In this work, we present the notion of admissible order for multidimensional data and we define the concept of directional monotonicity for multidimensional fusion functions with respect to an admissible order. Moreover, we study the main properties of directionally monotone functions in this new context. We conclude that, while some of the properties are still valid (e.g. the set of directions of increasingness is still closed under convex combinations), some of the main ones no longer hold (e.g. there does not exist a finite set of directions that characterize standard monotonicity in terms of directional monotonicity).Publication Open Access Generación ilimitada de personajes mediante Stable Diffusion con DreamBooth y LoRA(CAEPIA, 2024) Pascual Casas, Rubén; Maiza Coupin, Adrián Mikel; Sesma Sara, Mikel; Paternain Dallo, Daniel; Galar Idoate, Mikel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA2023-11377; Gobierno de Navarra / Nafarroako GobernuaEste artículo aborda el reto de generar un número ilimitado de personajes nuevos, y distintos, que engloben el estilo y las características visuales compartidas de un conjunto limitado de personajes diseñados por un humano. Este es un problema de gran relevancia en la industria audiovisual, ya que la capacidad de producir rápidamente personajes originales que se adhieran a unas características específicas aumenta enormemente las posibilidades en la producción de películas, series o videojuegos. Nuestra solución se basa en DreamBooth, un método de ajuste de modelos generativos de texto a imagen ampliamente extendido. Proponemos una adaptación centrada en dos retos principales: lo poco práctico que resulta utilizar prompts detallados de las imágenes para describir los personajes y la complejidad del ajuste de modelos a partir de un conjunto limitado de personajes. Para resolver estos problemas, introducimos en el entrenamiento de DreamBooth tokens adicionales específicos para cada personaje y eliminamos el conjunto de datos de regularización. Para generar personajes de manera ilimitada, proponemos el uso de tokens y embeddings aleatorios. Comprobamos la utilidad de la propuesta utilizando dos conjuntos de datos diferentes. Los resultados obtenidos muestran la capacidad de nuestro método para producir personajes diversos que se adhieren a un estilo y a unas características visuales concretas. Finalmente, desarrollamos un estudio de ablación.Publication Open Access F-homogeneous functions and a generalization of directional monotonicity(Wiley, 2022) Santiago, Regivan; Sesma Sara, Mikel; Fernández Fernández, Francisco Javier; Takáč, Zdenko; Mesiar, Radko; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaA function that takes (Formula presented.) numbers as input and outputs one number is said to be homogeneous whenever the result of multiplying each input by a certain factor (Formula presented.) yields the original output multiplied by that same factor. This concept has been extended by the notion of abstract homogeneity, which generalizes the product in the expression of homogeneity by a general function (Formula presented.) and the effect of the factor (Formula presented.) by an automorphism. However, the effect of parameter (Formula presented.) remains unchanged for all the input values. In this study, we generalize further the condition of abstract homogeneity by introducing (Formula presented.) -homogeneity, which is defined with respect to a family of functions, enabling a different behavior for each of the inputs. Next, we study the properties that are satisfied by this family of functions and, moreover, we link this concept with the condition of directional monotonicity, which is a trendy property in the framework of aggregation functions. To achieve that, we generalize directional monotonicity by (Formula presented.) directional monotonicity, which is defined with respect to a family of functions (Formula presented.) and a family of vectors (Formula presented.). Finally, we show how the introduced concepts could be applied in two different problems of computer vision: a snow detection problem and image thresholding improvement. © 2022 The Authors. International Journal of Intelligent Systems published by Wiley Periodicals LLC.
- «
- 1 (current)
- 2
- 3
- »