Albiac Alesanco, Fernando José

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Albiac Alesanco

First Name

Fernando José

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Uniqueness of unconditional basis of infinite direct sums of quasi-Banach spaces
    (Kluwer Academic Publishers, 2022) Albiac Alesanco, Fernando José; Ansorena, José L.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    This paper is devoted to providing a unifying approach to the study of the uniqueness of unconditional bases, up to equivalence and permutation, of infinite direct sums of quasi-Banach spaces. Our new approach to this type of problem permits to show that a wide class of vector-valued sequence spaces have a unique unconditional basis up to a permutation. In particular, solving a problem from Albiac and Leránoz (J Math Anal Appl 374(2):394-401, 2011. https://doi.org/10.1016/j.jmaa.2010.09.048) we show that if X is quasi-Banach space with a strongly absolute unconditional basis then the infinite direct sum -1(X) has a unique unconditional basis up to a permutation, even without knowing whether X has a unique unconditional basis or not. Applications to the uniqueness of unconditional structure of infinite direct sums of non-locally convex Orlicz and Lorentz sequence spaces, among other classical spaces, are also obtained as a by-product of our work.
  • PublicationOpen Access
    Uniqueness of unconditional basis of ℓ2⊕T(2)
    (American Mathematical Society, 2022) Albiac Alesanco, Fernando José; Ansorena, José L.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    We provide a new extension of Pitt’s theorem for compact operators between quasi-Banach lattices which permits to describe unconditional bases of finite direct sums of Banach spaces X1 · · · Xn as direct sums of unconditional bases of their summands. The general splitting principle we obtain yields, in particular, that if each Xi has a unique unconditional basis (up to equivalence and permutation), then X1 · · · Xn has a unique unconditional basis too. Among the novel applications of our techniques to the structure of Banach and quasi-Banach spaces we have that the space ℓ2⊕T(2) has a unique unconditional basis.