Albiac Alesanco, Fernando José
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Albiac Alesanco
First Name
Fernando José
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
7 results
Search Results
Now showing 1 - 7 of 7
Publication Open Access On certain subspaces of p for 0 < p ≤ 1 and their applications to conditional quasi-greedy bases in p-Banach spaces(Springer, 2021) Albiac Alesanco, Fernando José; Ansorena, José L.; Wojtaszczyk, Przemyslaw; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y MatemáticasWe construct for each 0Publication Open Access Greedy approximation for biorthogonal systems in quasi-Banach spaces(Instytut Matematyczny, 2021) Albiac Alesanco, Fernando José; Ansorena, José L.; Berná, Pablo M.; Wojtaszczyk, Przemyslaw; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y MatemáticasThe general problem addressed in this work is the development of a systematic study of the thresholding greedy algorithm for general biorthogonal systems in quasi-Banach spaces from a functional-analytic point of view. If (Formula Presented) is a biorthogonal system in X then for each x ∈ X we have a formal expansion (Formula Presented). The thresholding greedy algorithm (with threshold ε > 0) applied to x is formally defined as (Formula Presented). The properties of this operator give rise to the different classes of greedy-type bases. We revisit the concepts of greedy, quasi-greedy, and almost greedy bases in this comprehensive framework and provide the (non-trivial) extensions of the corresponding characterizations of those types of bases. As a by-product of our work, new properties arise, and the relations among them are carefully discussed.Publication Open Access Quasi-greedy bases in ℓp (0 < p < 1) are democratic(Elsevier, 2020) Albiac Alesanco, Fernando José; Ansorena, José L.; Wojtaszczyk, Przemyslaw; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y MatemáticasThe list of known Banach spaces whose linear geometry determines the (nonlinear) democracy functions of their quasi-greedy bases to the extent that they end up being democratic, reduces to c0, ℓ2, and all separable L1-spaces. Oddly enough, these are the only Banach spaces that, when they have an unconditional basis, it is unique. Our aim in this paper is to study the connection between quasi-greediness and democracy of bases in non-locally convex spaces. We prove that all quasi-greedy bases in ℓp for 0Publication Open Access Conditional quasi-greedy bases in non-superreflexive Banach spaces(Springer, 2019) Albiac Alesanco, Fernando José; Ansorena, José L.; Wojtaszczyk, Przemyslaw; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaFor a conditional quasi-greedy basis B in a Banach space, the associated conditionality constants km[B] verify the estimate km[B]=O(logm). Answering a question raised by Temlyakov, Yang, and Ye, several authors have studied whether this bound can be improved when we consider quasi-greedy bases in some special class of spaces. It is known that every quasi-greedy basis in a superreflexive Banach space verifies km[B]=O((logm)1-E) for some 0Publication Open Access Uniqueness of unconditional basis of Hp(T) ⊕ 2 and Hp(T) ⊕ T (2) for 0 < p < 1(Elsevier, 2022) Albiac Alesanco, Fernando José; Ansorena, José L.; Wojtaszczyk, Przemyslaw; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y MatemáticasOur goal in this paper is to advance the state of the art of the topic of uniqueness of unconditional basis. To that end we establish general conditions on a pair (X, Y) formed by a quasi-Banach space X and a Banach space Y which guarantee that every unconditional basis of their direct sum X ⊕ Y splits into unconditional bases of each summand. As application of our methods we obtain that, among others, the spaces Hp(Td) ⊕ T (2) and Hp(Td) ⊕ 2, for p ∈ (0, 1) and d ∈ N, have a unique unconditional basis (up to equivalence and permutation).Publication Open Access Existence of almost greedy bases in mixed-norm sequence and matrix spaces, including besov spaces(Springer, 2023) Albiac Alesanco, Fernando José; Ansorena, José L.; Bello, Glenier; Wojtaszczyk, Przemyslaw; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe prove that the sequence spaces lp ⊕ lq and the spaces of infinite matrices lp(lq ), lq l(p) and ( ∞ n=1 n lp)lq , which are isomorphic to certain Besov spaces, have an almost greedy basis whenever 0 < p < 1 < q < ∞. More precisely, we custom-build almost greedy bases in such a way that the Lebesgue parameters grow in a prescribed manner. Our arguments critically depend on the extension of the Dilworth–Kalton– Kutzarova method from Dilworth et al. (Stud Math 159(1):67–101, 2003), which was originally designed for constructing almost greedy bases in Banach spaces, to make it valid for direct sums of mixed-normed spaces with nonlocally convex components. Additionally, we prove that the fundamental functions of all almost greedy bases of these spaces grow as (ml/q )∞ m=l.Publication Open Access On a 'philosophical' question about Banach envelopes(Springer, 2021) Albiac Alesanco, Fernando José; Ansorena, José L.; Wojtaszczyk, Przemyslaw; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y MatemáticasWe show how to construct non-locally convex quasi-Banach spaces X whose dual separates the points of a dense subspace of X but does not separate the points of X. Our examples connect with a question raised by Pietsch (Rev Mat Complut 22(1):209-226, 2009) and shed light into the unexplored class of quasi-Banach spaces with nontrivial dual which do not have sufficiently many functionals to separate the points of the space.