Existence of almost greedy bases in mixed-norm sequence and matrix spaces, including besov spaces

Date

2023

Authors

Ansorena, José L.
Bello, Glenier
Wojtaszczyk, Przemyslaw

Director

Publisher

Springer
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107701GB-I00/ES/ recolecta
Impacto

Abstract

We prove that the sequence spaces lp ⊕ lq and the spaces of infinite matrices lp(lq ), lq l(p) and ( ∞ n=1 n lp)lq , which are isomorphic to certain Besov spaces, have an almost greedy basis whenever 0 < p < 1 < q < ∞. More precisely, we custom-build almost greedy bases in such a way that the Lebesgue parameters grow in a prescribed manner. Our arguments critically depend on the extension of the Dilworth–Kalton– Kutzarova method from Dilworth et al. (Stud Math 159(1):67–101, 2003), which was originally designed for constructing almost greedy bases in Banach spaces, to make it valid for direct sums of mixed-normed spaces with nonlocally convex components. Additionally, we prove that the fundamental functions of all almost greedy bases of these spaces grow as (ml/q )∞ m=l.

Description

Keywords

Almost greedy basis, Conditional basis, Quasi-greedy basis, Subsymmetric basis, Thresholding greedy algorithm, lp-Spaces

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika / Institute for Advanced Materials and Mathematics - INAMAT2

Faculty/School

Degree

Doctorate program

item.page.cita

Albiac, F., Ansorena, J. L., Bello, G., & Wojtaszczyk, P. (2023). Existence of almost greedy bases in mixed-norm sequence and matrix spaces, including besov spaces. Constructive Approximation. https://doi.org/10.1007/s00365-023-09662-0

item.page.rights

© 2023, The Author(s). This article is licensed under a CreativeCommonsAttribution 4.0 InternationalLicense.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.