Person:
Ferrero Jaurrieta, Mikel

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Ferrero Jaurrieta

First Name

Mikel

person.page.departamento

Estadística, Informática y Matemáticas

ORCID

0000-0002-6854-3437

person.page.upna

812011

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    VCI-LSTM: Vector choquet integral-based long short-term memory
    (IEEE, 2022) Ferrero Jaurrieta, Mikel; Takáč, Zdenko; Fernández Fernández, Francisco Javier; Horanská, Lubomíra; Pereira Dimuro, Graçaliz; Montes, Susana; Díaz, Irene; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Choquet integral is a widely used aggregation operator on one-dimensional and interval-valued information, since it is able to take into account the possible interaction among data. However, there are many cases where the information taken into account is vectorial, such as Long Short-Term Memories (LSTM). LSTM units are a kind of Recurrent Neural Networks that have become one of the most powerful tools to deal with sequential information since they have the power of controlling the information flow. In this paper, we first generalize the standard Choquet integral to admit an input composed by $n$-dimensional vectors, which produces an $n$-dimensional vector output. We study several properties and construction methods of vector Choquet integrals. Then, we use this integral in the place of the summation operator, introducing in this way the new VCI-LSTM architecture. Finally, we use the proposed VCI-LSTM to deal with two problems: sequential image classification and text classification.
  • PublicationOpen Access
    Fuzzy sets complement-based gated recurrent unit
    (CEUR Workshop Proceedings (CEUR-WS.org), 2021) Ferrero Jaurrieta, Mikel; Pereira Dimuro, Graçaliz; Takáč, Zdenko; Santiago, Regivan; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Gobierno de Navarra / Nafarroako Gobernua
    Gated Recurrent Units (GRU) are neural network gated architectures that simplify other ones (suchas, LSTM) by joining gates mainly. For this, instead of using two gates, if𝑥is the first gate, standardoperation1−𝑥is used to generate the second one, optimizing the number of parameters. In this work, we interpret this information as a fuzzy set, and we generalize the standard operation using fuzzy negations, and improving the accuracy obtained with the standard one.