Publication:
Fuzzy sets complement-based gated recurrent unit

Date

2021

Director

Publisher

CEUR Workshop Proceedings (CEUR-WS.org)
Acceso abierto / Sarbide irekia
Contribución a congreso / Biltzarrerako ekarpena
Versión publicada / Argitaratu den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108392GB-I00/ES/recolecta

Abstract

Gated Recurrent Units (GRU) are neural network gated architectures that simplify other ones (suchas, LSTM) by joining gates mainly. For this, instead of using two gates, if𝑥is the first gate, standardoperation1−𝑥is used to generate the second one, optimizing the number of parameters. In this work, we interpret this information as a fuzzy set, and we generalize the standard operation using fuzzy negations, and improving the accuracy obtained with the standard one.

Description

Keywords

Fuzzy set complement, Fuzzy negations, Recurrent neural networks, Gated recurrent unit

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.