Ruiz de Galarreta, José Ignacio

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Ruiz de Galarreta

First Name

José Ignacio

person.page.departamento

Derecho Privado

person.page.instituteName

ORCID

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 5 of 5
  • PublicationOpen Access
    Mapping acrylamide content in potato chips using near-infrared hyperspectral imaging and chemometrics
    (Elsevier, 2025-03-14) Peraza Alemán, Carlos Miguel; López Maestresalas, Ainara; Jarén Ceballos, Carmen; Ruiz de Galarreta, José Ignacio; Barandalla, Leire; Arazuri Garín, Silvia; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD
    This study investigated the potential of near-infrared hyperspectral imaging (NIR-HSI) for the prediction of acrylamide content in potato chips. A total of 300 tubers from two potato varieties (Agria and Jaerla) grown in two seasons and processed under the same frying conditions were analysed. Partial Least Square Regression (PLSR) and Support Vector Machine Regression (SVMR), combined with a logarithmic transformation of the acrylamide levels, were applied to develop predictive models. The most optimal outcomes for PLSR yielded R2 p: 0.85, RMSEP: 201 μg/kg and RPD: 2.53, while for SVMR yielded R2 p: 0.80, RMSEP: 229 μg/kg and RPD: 2.22. Furthermore, the selection of significant wavelengths enabled an 87.95 % reduction in variables without affecting the model’s accuracy. Finally, spatial mapping of acrylamide content was conducted on all chips in the external validation set. This method provides both quantification and visualization capabilities, thus enhancing quality control for acrylamide identification in processed potatoes.
  • PublicationOpen Access
    Predicting the spatial distribution of reducing sugars using near-infrared hyperspectral imaging and chemometrics: a study in multiple potato genotypes
    (Elsevier, 2025-08-01) Peraza Alemán, Carlos Miguel; Arazuri Garín, Silvia; Jarén Ceballos, Carmen; Ruiz de Galarreta, José Ignacio; Barandalla, Leire; López Maestresalas, Ainara; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD
    The determination of reducing sugars in potatoes is important due to their impact on product quality during industrial processing. The significant variability of these compounds between genotypes presents a challenge to the development of accurate predictive models. This study evaluated the potential of near-infrared hyperspectral imaging (NIR-HSI) for the prediction of reducing sugars in potatoes. For this, a wide range of genotypes (n=92) from two seasons (2020-2021) was selected. Partial Least Squares Regression (PLSR) and Support Vector Machine Regression (SVMR) methods were used to build the prediction models. Furthermore, interval PLS (iPLS), recursive weighted PLS (rPLS), Genetic Algorithm (GA) and Competitive Adaptive Reweighted Sampling (CARS) were used for relevant wavelength identification to develop less computationally complex models. The best full spectrum model (SNV-PLSR) achieved coefficient of determination and root mean square error values of 0.88 and 0.053% and 0.86 and 0.057%, for calibration and external validation, respectively. Variable selection algorithms successfully reduced the dimensionality of the data without compromising the performance of the models. Robust predicted models were built with only 2.65% (CARS-PLSR) and 3.57% (iPLS-SVMR) of the total wavelengths. Finally, a pixel-wise prediction was performed on the validation set and chemical images were built to visualise the spatial distribution of reducing sugars. This study demonstrated that NIR-HSI is a feasible technique for predicting reducing sugars in several potato genotypes.
  • PublicationOpen Access
    Imágenes hiperespectrales para el estudio de la respuesta a la deficiencia de nitrógeno de distintos cultivares de patata
    (Sociedad Española de Ciencias Hortícolas, 2021) López Maestresalas, Ainara; Jarén Ceballos, Carmen; Ruiz de Galarreta, José Ignacio; Álvarez Morezuelas, Alba; Barandalla, Leire; Arazuri Garín, Silvia; Ingeniería; Ingeniaritza
    El cambio climático es uno de los mayores retos de la agricultura moderna. El aumento del rendimiento de los cultivos en el futuro sólo será posible si pueden hacer frente a las consecuencias del cambio climático causado por el aumento de CO2 en la atmósfera. En el cultivo de la patata es muy probable que los estreses abióticos se incrementen considerablemente comprometiendo la sostenibilidad de su producción. A largo plazo, las condiciones de elevado CO2 podrían alterar la toma y transporte de nutrientes, particularmente del nitrógeno (N). Esto conlleva la necesidad de seleccionar cultivares que por sus características genéticas, fisiológicas y agronómicas se adapten mejor a las condiciones del cambio climático global, particularmente a la eficiencia en el uso del N. Para ello, en este estudio, se ha empleado la tecnología de imágenes hiperespectrales con el objetivo de desarrollar modelos de clasificación de variedades más eficientes en el uso del N. Se han muestreado plantas de dos campos experimentales: control y con una reducción del 75% de aporte de N. Se han adquirido imágenes hiperespectrales de 120 hojas de las plantas control y 120 de plantas sometidas a una reducción del 75% de aporte de N. Se han aplicado métodos multivariantes de clasificación para comprobar el potencial de las imágenes hiperespectrales en la identificación de cultivares de patata mejor adaptados a una deficiencia de N, con resultados prometedores. Además, para evaluar la respuesta de las plantas a las diferentes dosis de N, se analizará el contenido total de N, lo que permitirá evaluar la eficiencia en el uso del N en función de la productividad, así como la concentración de metabolitos nitrogenados.
  • PublicationOpen Access
    Imágenes hiperespectrales para el estudio de la respuesta a los estreses abióticos (deficiencia de riego y abonado) de distintos cultivares de patata
    (Ediciones de Horticultura, 2021) López Maestresalas, Ainara; Jarén Ceballos, Carmen; Pérez Roncal, Claudia; Ruiz de Galarreta, José Ignacio; Álvarez, Alba; Barandalla, Leire; Arazuri Garín, Silvia; Ingeniería; Ingeniaritza
    El objetivo de este trabajo fue evaluar el potencial de las imágenes hiperespectrales para clasificar tubérculos sometidos a estreses abióticos controlados.
  • PublicationOpen Access
    Intergenotypic prediction of reducing sugars in intact potatoes using near-infrared spectroscopy and multivariate analysis
    (Elsevier, 2025-12-01) Peraza Alemán, Carlos Miguel; Arazuri Garín, Silvia; Jarén Ceballos, Carmen; Ruiz de Galarreta, José Ignacio; Barandalla, Leire; López Maestresalas, Ainara; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Potatoes (Solanum tuberosum L.) are among the most widely consumed foods worldwide and are used in various culinary preparations. As a result, their production has increased in recent decades, prompting the potato industry to place greater emphasis on quality control measures for this food. In this context, reducing sugars stand out as being directly linked to the formation of acrylamide, a recognized carcinogen. Although Near Infrared Spectroscopy (NIRS) has been successfully used to predict reducing sugar content in this crop, the applicability of models across different potato cultivars remains limited due to genotypic variability. This study aimed to assess the potential of NIRS (1200¿2200 nm) to predict reducing sugar content across a diverse set of potato genotypes (n = 114). Excellent outcomes were obtained for both full spectrum and selected wavelength models. The results demonstrated high predictive accuracy with an R2 of 0.89 and an RMSE of 0.061 % for calibration, while external predictions in new genotypes yielded an R2 of 0.91 and RMSE of 0.065 % for SVMR model. These findings highlight the feasibility of using NIRS for rapid, real-time and non-destructive assessment of reducing sugars in untested potato genotypes, offering a valuable tool for industry applications.