Ruiz de Galarreta, José Ignacio
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Ruiz de Galarreta
First Name
José Ignacio
person.page.departamento
Derecho Privado
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
4 results
Search Results
Now showing 1 - 4 of 4
Publication Embargo Mapping acrylamide content in potato chips using near-infrared hyperspectral imaging and chemometrics(Elsevier, 2025-03-14) Peraza Alemán, Carlos Miguel; López Maestresalas, Ainara; Jarén Ceballos, Carmen; Ruiz de Galarreta, José Ignacio; Barandalla, Leire; Arazuri Garín, Silvia; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOODThis study investigated the potential of near-infrared hyperspectral imaging (NIR-HSI) for the prediction of acrylamide content in potato chips. A total of 300 tubers from two potato varieties (Agria and Jaerla) grown in two seasons and processed under the same frying conditions were analysed. Partial Least Square Regression (PLSR) and Support Vector Machine Regression (SVMR), combined with a logarithmic transformation of the acrylamide levels, were applied to develop predictive models. The most optimal outcomes for PLSR yielded R2 p: 0.85, RMSEP: 201 μg/kg and RPD: 2.53, while for SVMR yielded R2 p: 0.80, RMSEP: 229 μg/kg and RPD: 2.22. Furthermore, the selection of significant wavelengths enabled an 87.95 % reduction in variables without affecting the model’s accuracy. Finally, spatial mapping of acrylamide content was conducted on all chips in the external validation set. This method provides both quantification and visualization capabilities, thus enhancing quality control for acrylamide identification in processed potatoes.Publication Open Access Imágenes hiperespectrales para el estudio de la respuesta a la deficiencia de nitrógeno de distintos cultivares de patata(Sociedad Española de Ciencias Hortícolas, 2021) López Maestresalas, Ainara; Jarén Ceballos, Carmen; Ruiz de Galarreta, José Ignacio; Álvarez Morezuelas, Alba; Barandalla, Leire; Arazuri Garín, Silvia; Ingeniería; IngeniaritzaEl cambio climático es uno de los mayores retos de la agricultura moderna. El aumento del rendimiento de los cultivos en el futuro sólo será posible si pueden hacer frente a las consecuencias del cambio climático causado por el aumento de CO2 en la atmósfera. En el cultivo de la patata es muy probable que los estreses abióticos se incrementen considerablemente comprometiendo la sostenibilidad de su producción. A largo plazo, las condiciones de elevado CO2 podrían alterar la toma y transporte de nutrientes, particularmente del nitrógeno (N). Esto conlleva la necesidad de seleccionar cultivares que por sus características genéticas, fisiológicas y agronómicas se adapten mejor a las condiciones del cambio climático global, particularmente a la eficiencia en el uso del N. Para ello, en este estudio, se ha empleado la tecnología de imágenes hiperespectrales con el objetivo de desarrollar modelos de clasificación de variedades más eficientes en el uso del N. Se han muestreado plantas de dos campos experimentales: control y con una reducción del 75% de aporte de N. Se han adquirido imágenes hiperespectrales de 120 hojas de las plantas control y 120 de plantas sometidas a una reducción del 75% de aporte de N. Se han aplicado métodos multivariantes de clasificación para comprobar el potencial de las imágenes hiperespectrales en la identificación de cultivares de patata mejor adaptados a una deficiencia de N, con resultados prometedores. Además, para evaluar la respuesta de las plantas a las diferentes dosis de N, se analizará el contenido total de N, lo que permitirá evaluar la eficiencia en el uso del N en función de la productividad, así como la concentración de metabolitos nitrogenados.Publication Embargo Predicting the spatial distribution of reducing sugars using near-infrared hyperspectral imaging and chemometrics: a study in multiple potato genotypes(Elsevier, 2025-03-27) Peraza Alemán, Carlos Miguel; Arazuri Garín, Silvia; Jarén Ceballos, Carmen; Ruiz de Galarreta, José Ignacio; Barandalla, Leire; López Maestresalas, Ainara; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOODThe determination of reducing sugars in potatoes is important due to their impact on product quality during industrial processing. The significant variability of these compounds between genotypes presents a challenge to the development of accurate predictive models. This study evaluated the potential of near-infrared hyperspectral imaging (NIR-HSI) for the prediction of reducing sugars in potatoes. For this, a wide range of genotypes (n=92) from two seasons (2020-2021) was selected. Partial Least Squares Regression (PLSR) and Support Vector Machine Regression (SVMR) methods were used to build the prediction models. Furthermore, interval PLS (iPLS), recursive weighted PLS (rPLS), Genetic Algorithm (GA) and Competitive Adaptive Reweighted Sampling (CARS) were used for relevant wavelength identification to develop less computationally complex models. The best full spectrum model (SNV-PLSR) achieved coefficient of determination and root mean square error values of 0.88 and 0.053% and 0.86 and 0.057%, for calibration and external validation, respectively. Variable selection algorithms successfully reduced the dimensionality of the data without compromising the performance of the models. Robust predicted models were built with only 2.65% (CARS-PLSR) and 3.57% (iPLS-SVMR) of the total wavelengths. Finally, a pixel-wise prediction was performed on the validation set and chemical images were built to visualise the spatial distribution of reducing sugars. This study demonstrated that NIR-HSI is a feasible technique for predicting reducing sugars in several potato genotypes.Publication Open Access Imágenes hiperespectrales para el estudio de la respuesta a los estreses abióticos (deficiencia de riego y abonado) de distintos cultivares de patata(Ediciones de Horticultura, 2021) López Maestresalas, Ainara; Jarén Ceballos, Carmen; Pérez Roncal, Claudia; Ruiz de Galarreta, José Ignacio; Álvarez, Alba; Barandalla, Leire; Arazuri Garín, Silvia; Ingeniería; IngeniaritzaEl objetivo de este trabajo fue evaluar el potencial de las imágenes hiperespectrales para clasificar tubérculos sometidos a estreses abióticos controlados.