Person:
Taglialegna, Agustina

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Taglialegna

First Name

Agustina

person.page.departamento

ProducciĆ³n Agraria

person.page.instituteName

ORCID

0000-0003-4844-8720

person.page.upna

810797

Name

Search Results

Now showing 1 - 5 of 5
  • PublicationOpen Access
    Bacterial biofilm functionalization through Bap amyloid engineering
    (Springer Nature, 2022) Matilla Cuenca, Leticia; Taglialegna, Agustina; Gil Puig, Carmen; Toledo Arana, Alejandro; Lasa Uzcudun, ĆĆ±igo; Valle Turrillas, Jaione; Ciencias de la Salud; Osasun Zientziak
    Biofilm engineering has emerged as a controllable way to fabricate living structures with programmable functionalities. The amyloidogenic proteins comprising the biofilms can be engineered to create self-assembling extracellular functionalized surfaces. In this regard, facultative amyloids, which play a dual role in biofilm formation by acting as adhesins in their native conformation and as matrix scaffolds when they polymerize into amyloid-like fibrillar structures, are interesting candidates. Here, we report the use of the facultative amyloid-like Bap protein of Staphylococcus aureus as a tool to decorate the extracellular biofilm matrix or the bacterial cell surface with a battery of functional domains or proteins. We demonstrate that the localization of the functional tags can be change by simply modulating the pH of the medium. Using Bap features, we build a tool for trapping and covalent immobilizing molecules at bacterial cell surface or at the biofilm matrix based on the SpyTag/SpyCatcher system. Finally, we show that the cell wall of several Gram-positive bacteria could be functionalized through the external addition of the recombinant engineered Bap-amyloid domain. Overall, this work shows a simple and modulable system for biofilm functionalization based on the facultative protein Bap. Ā© 2022, The Author(s).
  • PublicationOpen Access
    Staphylococcal Bap proteins build amyloid scaffold biofilm matrices in response to environmental signals
    (Public Library of Science, 2016) Taglialegna, Agustina; Navarro, Susanna; Ventura, Salvador; Garnett, James A.; Matthews, Steve; PenadĆ©s, JosĆ© R.; Lasa Uzcudun, ĆĆ±igo; Valle Turrillas, Jaione; IdAB. Instituto de AgrobiotecnologĆ­a / Agrobioteknologiako Institutua
    Major components of the biofilm matrix scaffold are proteins that assemble to create a unified structure that maintain bacteria attached to each other and to surfaces. We provide evidence that a surface protein present in several staphylococcal species forms functional amyloid aggregates to build the biofilm matrix in response to specific environmental conditions. Under low Ca2+ concentrations and acidic pH, Bap is processed and forms insoluble aggregates with amyloidogenic properties. When the Ca2+ concentration increases, metal-coordinated Bap adopts a structurally more stable conformation and as a consequence, the N-terminal region is unable to assemble into amyloid aggregates. The control of Bap cleavage and assembly helps to regulate biofilm matrix development as a function of environmental changes.
  • PublicationOpen Access
    The biofilm-associated surface protein Esp of Enterococcus faecalis forms amyloid-like fibers
    (Nature Research, 2020) Taglialegna, Agustina; Matilla Cuenca, Leticia; Dorado Morales, Pedro; Navarro, Susanna; Ventura, Salvador; Garnett, James A.; Lasa Uzcudun, ĆĆ±igo; Valle Turrillas, Jaione; Ciencias de la Salud; Osasun Zientziak
    Functional amyloids are considered as common building block structures of the biofilm matrix in different bacteria. In previous work, we have shown that the staphylococcal surface protein Bap, a member of the Biofilm-Associated Proteins (BAP) family, is processed and the fragments containing the N-terminal region become aggregation-prone and self-assemble into amyloid-like structures. Here, we report that Esp, a Bap-orthologous protein produced by Enterococcus faecalis, displays a similar amyloidogenic behavior. We demonstrate that at acidic pH the N-terminal region of Esp forms aggregates with an amyloid-like conformation, as evidenced by biophysical analysis and the binding of protein aggregates to amyloid-indicative dyes. Expression of a chimeric protein, with its Esp N-terminal domain anchored to the cell wall through the R domain of clumping factor A, showed that the Esp N-terminal region is sufficient to confer multicellular behavior through the formation of an extracellular amyloid-like material. These results suggest that the mechanism of amyloid-like aggregation to build the biofilm matrix might be widespread among BAP-like proteins. This amyloid-based mechanism may not only have strong relevance for bacteria lifestyle but could also contribute to the amyloid burden to which the human physiology is potentially exposed.
  • PublicationOpen Access
    Amyloid structures as biofilm matrix scaffolds
    (American Society for Microbiology, 2016) Taglialegna, Agustina; Lasa Uzcudun, ĆĆ±igo; Valle Turrillas, Jaione; IdAB. Instituto de AgrobiotecnologĆ­a / Agrobioteknologiako Institutua
    Recent insights into bacterial biofilm matrix structures have induced a paradigm shift toward the recognition of amyloid fibers as common building block structures that confer stability to the exopolysaccharide matrix. Here we describe the functional amyloid systems related to biofilm matrix formation in both Gram-negative and Gram-positive bacteria and recent knowledge regarding the interaction of amyloids with other biofilm matrix components such as extracellular DNA (eDNA) and the host immune system. In addition, we summarize the efforts to identify compounds that target amyloid fibers for therapeutic purposes and recent developments that take advantage of the amyloid structure to engineer amyloid fibers of bacterial biofilm matrices for biotechnological applications.
  • PublicationOpen Access
    Study of the molecular mechanisms underlying Bap-mediated cell-cell interactions in Staphylococcus aureus
    (2016) Taglialegna, Agustina; Lasa Uzcudun, ĆĆ±igo; Valle Turrillas, Jaione; ProducciĆ³n Agraria; Nekazaritza Ekoizpena
    La mayorĆ­a de los microorganismos son capaces de vivir en comunidades sĆ©siles, siendo esta forma de crecimiento bastante mĆ”s frecuente que la forma de vida planctĆ³nica. En estas comunidades microbianas, conocidas como biofilms, las cĆ©lulas crecen adheridas a un sustrato y embebidas en una matriz exopolimĆ©rica que ellas mismas producen, y que confiere numerosas ventajas a la poblaciĆ³n: integridad estructural, protecciĆ³n ante factores externos, y control de la absorciĆ³n de nutrientes. La composiciĆ³n de esta matriz extracelular es sumamente compleja, variando entre diferentes especies bacterianas y siendo muy susceptible a los cambios que puedan ocurrir en el ambiente circundante. Aproximadamente el 97% de la matriz es agua; el resto es una mezcla de nutrientes, metabolitos, productos de la lisis celular y polĆ­meros secretados (polisacĆ”ridos, lĆ­pidos, DNA, proteĆ­nas). Staphylococcus aureus, una bacteria comensal y patĆ³gena causante de numerosas infecciones agudas y crĆ³nicas tanto en animales como en humanos, tiene la capacidad de desarrollar biofilms sobre una gran diversidad de superficies vivas e inertes. Esto representa para la bacteria un importante factor de virulencia que aumenta su persistencia y patogenicidad. Por ello, la sociedad cientĆ­fica ha dedicado grandes esfuerzos a lo largo de las ultimas dĆ©cadas en descifrar la composiciĆ³n de la matriz extracelular estafilocĆ³cica, las caracterĆ­sticas estructurales de sus elementos, asĆ­ como las vĆ­as de regulaciĆ³n y los procesos moleculares que controlan su composiciĆ³n. Estudios recientes han puesto de manifiesto que las proteĆ­nas son uno de los componentes mayoritarios de la matriz extracelular de S. aureus, sin embargo, actualmente poco se sabe acerca de los aspectos relacionados con su organizaciĆ³n espacial en la matriz del biofilm y de las interacciones moleculares con otros componentes de la matriz extracelular o de la cĆ©lula huĆ©sped. En el presente trabajo, hemos estudiado los mecanismos moleculares mediante los cuales la proteĆ­na Bap (Biofilm associated protein) es capaz de inducir la interacciĆ³n intercelular en S. aureus. Bap es una proteĆ­na de alto peso molecular que se encuentra anclada covalentemente a la superficie bacteriana mediante un mecanismo dependiente de la enzima sortasa. Hemos determinado que la proteĆ­na Bap interconecta cĆ©lulas de S. aureus a travĆ©s de un proceso de autoensamblaje que da lugar a agregados de tipo amiloide en respuesta a determinadas condiciones ambientales. Mas especĆ­ficamente, nuestros resultados indican que Bap sufre un procesamiento en el que se liberan fragmentos que contienen la regiĆ³n N-terminal. Esta regiĆ³n tiene una conformaciĆ³n de tipo glĆ³bulo fundido (molten-globule) que cambia a una estructura rica en lĆ”minas Ī² cuando el pH se acidifica. El estado glĆ³bulo fundido de los fragmentos N-terminales de Bap se caracteriza por poseer una estructura terciaria poco organizada. Sin embargo, cuando se organiza en laminas Ī² tiene tendencia a polimerizar para formar fibras de tipo amiloide. La transiciĆ³n de Bap desde glĆ³bulo fundido a lamina-Ī² no ocurre en presencia de calcio. La uniĆ³n del calcio a los dominios EF-hand presentes en la regiĆ³n N-terminal de Bap estabiliza la conformaciĆ³n de glĆ³bulo fundido impidiendo la transiciĆ³n a lamina Ī² y el subsecuente ensamblaje de las fibrillas amiloides. Estos resultados indican que Bap juega una doble funciĆ³n en el proceso de formaciĆ³n del biofilm, primero como sensor de condiciones ambientales externas, y segundo como modulo para la construcciĆ³n de un andamiaje proteico que sustente la matriz del biofilm en determinadas situaciones ambientales. Este comportamiento multicelular dependiente de pH estĆ” conservado en proteĆ­nas Bap presentes en otros estafilococos coagulasa negativos. La existencia de proteĆ­nas homĆ³logas a Bap en otras bacterias sugiere que este mecanismo de agregaciĆ³n amiloide como estrategia para formar la matriz del biofilm, estĆ” conservado en bacterias.