Galar Idoate, Mikel
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Galar Idoate
First Name
Mikel
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
29 results
Search Results
Now showing 1 - 10 of 29
Publication Open Access On the influence of interval normalization in IVOVO fuzzy multi-class classifier(Springer, 2019) Uriz Martín, Mikel Xabier; Paternain Dallo, Daniel; Bustince Sola, Humberto; Galar Idoate, Mikel; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA13IVOVO stands for Inverval-Valued One-Vs-One and is the combination of IVTURS fuzzy classifier and the One-Vs-One strategy. This method is designed to improve the performance of IVTURS in multi-class problems, by dividing the original problem into simpler binary ones. The key issue with IVTURS is that interval-valued confidence degrees for each class are returned and, consequently, they have to be normalized for applying a One-Vs-One strategy. However, there is no consensus on which normalization method should be used with intervals. In IVOVO, the normalization method based on the upper bounds was considered as it maintains the admissible order between intervals and also the proportion of ignorance, but no further study was developed. In this work, we aim to extend this analysis considering several normalizations in the literature. We will study both their main theoretical properties and empirical performance in the final results of IVOVO.Publication Open Access A study of different families of fusion functions for combining classifiers in the one-vs-one strategy(Springer, 2018) Uriz Martín, Mikel Xabier; Paternain Dallo, Daniel; Jurío Munárriz, Aránzazu; Bustince Sola, Humberto; Galar Idoate, Mikel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaIn this work we study the usage of different families of fusion functions for combining classifiers in a multiple classifier system of One-vs-One (OVO) classifiers. OVO is a decomposition strategy used to deal with multi-class classification problems, where the original multi-class problem is divided into as many problems as pair of classes. In a multiple classifier system, classifiers coming from different paradigms such as support vector machines, rule induction algorithms or decision trees are combined. In the literature, several works have addressed the usage of classifier selection methods for these kinds of systems, where the best classifier for each pair of classes is selected. In this work, we look at the problem from a different perspective aiming at analyzing the behavior of different families of fusion functions to combine the classifiers. In fact, a multiple classifier system of OVO classifiers can be seen as a multi-expert decision making problem. In this context, for the fusion functions depending on weights or fuzzy measures, we propose to obtain these parameters from data. Backed-up by a thorough experimental analysis we show that the fusion function to be considered is a key factor in the system. Moreover, those based on weights or fuzzy measures can allow one to better model the aggregation problem.Publication Open Access A survey on fingerprint minutiae-based local matching for verification and identification: taxonomy and experimental evaluation(Elsevier, 2015) Peralta, Daniel; Galar Idoate, Mikel; Triguero, Isaac; Paternain Dallo, Daniel; García, Salvador; Barrenechea Tartas, Edurne; Benítez, José Manuel; Bustince Sola, Humberto; Herrera, Francisco; Automática y Computación; Automatika eta KonputazioaFingerprint recognition has found a reliable application for verification or identification of people in biometrics. Globally, fingerprints can be viewed as valuable traits due to several perceptions observed by the experts; such as the distinctiveness and the permanence on humans and the performance in real applications. Among the main stages of fingerprint recognition, the automated matching phase has received much attention from the early years up to nowadays. This paper is devoted to review and categorize the vast number of fingerprint matching methods proposed in the specialized literature. In particular, we focus on local minutiae-based matching algorithms, which provide good performance with an excellent trade-off between efficacy and efficiency. We identify the main properties and differences of existing methods. Then, we include an experimental evaluation involving the most representative local minutiae-based matching models in both verification and evaluation tasks. The results obtained will be discussed in detail, supporting the description of future directions.Publication Open Access Bitcoin and cybersecurity: temporal dissection of blockchain data to unveil changes in entity behavioral patterns(MDPI, 2019) Zola, Francesco; Bruse, Jan Lukas; Eguimendia, María; Galar Idoate, Mikel; Orduna Urrutia, Raúl; Institute of Smart Cities - ISCThe Bitcoin network not only is vulnerable to cyber-attacks but currently represents the most frequently used cryptocurrency for concealing illicit activities. Typically, Bitcoin activity is monitored by decreasing anonymity of its entities using machine learning-based techniques, which consider the whole blockchain. This entails two issues: first, it increases the complexity of the analysis requiring higher efforts and, second, it may hide network micro-dynamics important for detecting short-term changes in entity behavioral patterns. The aim of this paper is to address both issues by performing a 'temporal dissection' of the Bitcoin blockchain, i.e., dividing it into smaller temporal batches to achieve entity classification. The idea is that a machine learning model trained on a certain time-interval (batch) should achieve good classification performance when tested on another batch if entity behavioral patterns are similar. We apply cascading machine learning principles'a type of ensemble learning applying stacking techniques'introducing a 'k-fold cross-testing' concept across batches of varying size. Results show that blockchain batch size used for entity classification could be reduced for certain classes (Exchange, Gambling, and eWallet) as classification rates did not vary significantly with batch size; suggesting that behavioral patterns did not change significantly over time. Mixer and Market class detection, however, can be negatively affected. A deeper analysis of Mining Pool behavior showed that models trained on recent data perform better than models trained on older data, suggesting that 'typical' Mining Pool behavior may be represented better by recent data. This work provides a first step towards uncovering entity behavioral changes via temporal dissection of blockchain data.Publication Open Access CFM-BD: a distributed rule induction algorithm for building compact fuzzy models in Big Data classification problems(IEEE, 2020) Elkano Ilintxeta, Mikel; Sanz Delgado, José Antonio; Barrenechea Tartas, Edurne; Bustince Sola, Humberto; Galar Idoate, Mikel; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasInterpretability has always been a major concern for fuzzy rule-based classifiers. The usage of human-readable models allows them to explain the reasoning behind their predictions and decisions. However, when it comes to Big Data classification problems, fuzzy rule based classifiers have not been able to maintain the good tradeoff between accuracy and interpretability that has characterized these techniques in non-Big-Data environments. The most accurate methods build models composed of a large number of rules and fuzzy sets that are too complex, while those approaches focusing on interpretability do not provide state-of-the-art discrimination capabilities. In this paper, we propose a new distributed learning algorithm named CFM-BD to construct accurate and compact fuzzy rule-based classification systems for Big Data. This method has been specifically designed from scratch for Big Data problems and does not adapt or extend any existing algorithm. The proposed learning process consists of three stages: Preprocessing based on the probability integral transform theorem; rule induction inspired by CHI-BD and Apriori algorithms; and rule selection by means of a global evolutionary optimization. We conducted a complete empirical study to test the performance of our approach in terms of accuracy, complexity, and runtime. The results obtained were compared and contrasted with four state-of-the-art fuzzy classifiers for Big Data (FBDT, FMDT, Chi-Spark-RS, and CHI-BD). According to this study, CFM-BD is able to provide competitive discrimination capabilities using significantly simpler models composed of a few rules of less than three antecedents, employing five linguistic labels for all variables.Publication Open Access Extensions of fuzzy sets in image processing: an overview(EUSFLAT, 2011) Pagola Barrio, Miguel; Barrenechea Tartas, Edurne; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Galar Idoate, Mikel; Jurío Munárriz, Aránzazu; López Molina, Carlos; Paternain Dallo, Daniel; Sanz Delgado, José Antonio; Couto, Pedro; Melo-Pinto, Pedro; Automática y Computación; Automatika eta KonputazioaThis work presents a valuable review for the interested reader of the recent Works using extensions of fuzzy sets in image processing. The chapter is divided as follows: first we recall the basics of the extensions of fuzzy sets, i.e. Type 2 fuzzy sets, interval-valued fuzzy sets and Atanassov’s intuitionistic fuzzy sets. In sequent sections we review the methods proposed for noise removal (sections 3), image enhancement (section 4), edge detection (section 5) and segmentation (section 6). There exist other image segmentation tasks such as video de-interlacing, stereo matching or object representation that are not described in this work.Publication Open Access Additional feature layers from ordered aggregations for deep neural networks(IEEE, 2020) Domínguez Catena, Iris; Paternain Dallo, Daniel; Galar Idoate, Mikel; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn the last years we have seen huge advancements in the area of Machine Learning, specially with the use of Deep Neural Networks. One of the most relevant examples is in image classification, where convolutional neural networks have shown to be a vital tool, hard to replace with any other techniques. Although aggregation functions, such as OWA operators, have been previously used on top of neural networks, usually to aggregate the outputs of different networks or systems (ensembles), in this paper we propose and explore a new way of using OWA aggregations in deep learning. We implement OWA aggregations as a new layer inside a convolutional neural network. These layers are used to learn additional order-based information from the feature maps of a certain layer, and then the newly generated information is used as a complement input for the following layers. We carry out several tests introducing the new layer in a VGG13-based reference network and show that this layer introduces new knowledge into the network without substantially increasing training times.Publication Open Access A survey of fingerprint classification Part I: taxonomies on feature extraction methods and learning models(Elsevier, 2015) Galar Idoate, Mikel; Derrac, Joaquín; Peralta, Daniel; Triguero, Isaac; Paternain Dallo, Daniel; López Molina, Carlos; García, Salvador; Benítez, José Manuel; Pagola Barrio, Miguel; Barrenechea Tartas, Edurne; Bustince Sola, Humberto; Herrera, Francisco; Automática y Computación; Automatika eta KonputazioaThis paper reviews the fingerprint classification literature looking at the problem from a double perspective. We first deal with feature extraction methods, including the different models considered for singular point detection and for orientation map extraction. Then, we focus on the different learning models considered to build the classifiers used to label new fingerprints. Taxonomies and classifications for the feature extraction, singular point detection, orientation extraction and learning methods are presented. A critical view of the existing literature have led us to present a discussion on the existing methods and their drawbacks such as difficulty in their reimplementation, lack of details or major differences in their evaluations procedures. On this account, an experimental analysis of the most relevant methods is carried out in the second part of this paper, and a new method based on their combination is presented.Publication Open Access Super-resolution for Sentinel-2 images(International Society for Photogrammetry and Remote Sensing, 2019) Galar Idoate, Mikel; Sesma Redín, Rubén; Ayala Lauroba, Christian; Aranda, Carlos; Institute of Smart Cities - ISCObtaining Sentinel-2 imagery of higher spatial resolution than the native bands while ensuring that output imagery preserves the original radiometry has become a key issue since the deployment of Sentinel-2 satellites. Several studies have been carried out on the upsampling of 20m and 60m Sentinel-2 bands to 10 meters resolution taking advantage of 10m bands. However, how to super-resolve 10m bands to higher resolutions is still an open problem. Recently, deep learning-based techniques has become a de facto standard for single-image super-resolution. The problem is that neural network learning for super-resolution requires image pairs at both the original resolution (10m in Sentinel-2) and the target resolution (e.g., 5m or 2.5m). Since there is no way to obtain higher resolution images for Sentinel-2, we propose to consider images from others sensors having the greatest similarity in terms of spectral bands, which will be appropriately pre-processed. These images, together with Sentinel-2 images, will form our training set. We carry out several experiments using state-of-the-art Convolutional Neural Networks for single-image super-resolution showing that this methodology is a first step toward greater spatial resolution of Sentinel-2 images.Publication Open Access Generative adversarial networks for bitcoin data augmentation(IEEE, 2020) Zola, Francesco; Bruse, Jan Lukas; Etxeberria Barrio, Xabier; Galar Idoate, Mikel; Orduna Urrutia, Raúl; Institute of Smart Cities - ISCIn Bitcoin entity classification, results are strongly conditioned by the ground-truth dataset, especially when applying supervised machine learning approaches. However, these ground-truth datasets are frequently affected by significant class imbalance as generally they contain much more information regarding legal services (Exchange, Gambling), than regarding services that may be related to illicit activities (Mixer, Service). Class imbalance increases the complexity of applying machine learning techniques and reduces the quality of classification results, especially for underrepresented, but critical classes.In this paper, we propose to address this problem by using Generative Adversarial Networks (GANs) for Bitcoin data augmentation as GANs recently have shown promising results in the domain of image classification. However, there is no 'one-fits-all' GAN solution that works for every scenario. In fact, setting GAN training parameters is non-trivial and heavily affects the quality of the generated synthetic data. We therefore evaluate how GAN parameters such as the optimization function, the size of the dataset and the chosen batch size affect GAN implementation for one underrepresented entity class (Mining Pool) and demonstrate how a 'good' GAN configuration can be obtained that achieves high similarity between synthetically generated and real Bitcoin address data. To the best of our knowledge, this is the first study presenting GANs as a valid tool for generating synthetic address data for data augmentation in Bitcoin entity classification.
- «
- 1 (current)
- 2
- 3
- »