Galar Idoate, Mikel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Galar Idoate

First Name

Mikel

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 56
  • PublicationOpen Access
    A survey on fingerprint minutiae-based local matching for verification and identification: taxonomy and experimental evaluation
    (Elsevier, 2015) Peralta, Daniel; Galar Idoate, Mikel; Triguero, Isaac; Paternain Dallo, Daniel; García, Salvador; Barrenechea Tartas, Edurne; Benítez, José Manuel; Bustince Sola, Humberto; Herrera, Francisco; Automática y Computación; Automatika eta Konputazioa
    Fingerprint recognition has found a reliable application for verification or identification of people in biometrics. Globally, fingerprints can be viewed as valuable traits due to several perceptions observed by the experts; such as the distinctiveness and the permanence on humans and the performance in real applications. Among the main stages of fingerprint recognition, the automated matching phase has received much attention from the early years up to nowadays. This paper is devoted to review and categorize the vast number of fingerprint matching methods proposed in the specialized literature. In particular, we focus on local minutiae-based matching algorithms, which provide good performance with an excellent trade-off between efficacy and efficiency. We identify the main properties and differences of existing methods. Then, we include an experimental evaluation involving the most representative local minutiae-based matching models in both verification and evaluation tasks. The results obtained will be discussed in detail, supporting the description of future directions.
  • PublicationOpen Access
    CFM-BD: a distributed rule induction algorithm for building compact fuzzy models in Big Data classification problems
    (IEEE, 2020) Elkano Ilintxeta, Mikel; Sanz Delgado, José Antonio; Barrenechea Tartas, Edurne; Bustince Sola, Humberto; Galar Idoate, Mikel; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    Interpretability has always been a major concern for fuzzy rule-based classifiers. The usage of human-readable models allows them to explain the reasoning behind their predictions and decisions. However, when it comes to Big Data classification problems, fuzzy rule based classifiers have not been able to maintain the good tradeoff between accuracy and interpretability that has characterized these techniques in non-Big-Data environments. The most accurate methods build models composed of a large number of rules and fuzzy sets that are too complex, while those approaches focusing on interpretability do not provide state-of-the-art discrimination capabilities. In this paper, we propose a new distributed learning algorithm named CFM-BD to construct accurate and compact fuzzy rule-based classification systems for Big Data. This method has been specifically designed from scratch for Big Data problems and does not adapt or extend any existing algorithm. The proposed learning process consists of three stages: Preprocessing based on the probability integral transform theorem; rule induction inspired by CHI-BD and Apriori algorithms; and rule selection by means of a global evolutionary optimization. We conducted a complete empirical study to test the performance of our approach in terms of accuracy, complexity, and runtime. The results obtained were compared and contrasted with four state-of-the-art fuzzy classifiers for Big Data (FBDT, FMDT, Chi-Spark-RS, and CHI-BD). According to this study, CFM-BD is able to provide competitive discrimination capabilities using significantly simpler models composed of a few rules of less than three antecedents, employing five linguistic labels for all variables.
  • PublicationOpen Access
    Network traffic analysis through node behaviour classification: a graph-based approach with temporal dissection and data-level preprocessing
    (Elsevier, 2022) Zola, Francesco; Segurola-Gil, Lander; Bruse, Jan Lukas; Galar Idoate, Mikel; Orduna Urrutia, Raúl; Institute of Smart Cities - ISC
    Network traffic analysis is an important cybersecurity task, which helps to classify anomalous, potentially dangerous connections. In many cases, it is critical not only to detect individual malicious connections, but to detect which node in a network has generated malicious traffic so that appropriate actions can be taken to reduce the threat and increase the system's cybersecurity. Instead of analysing connections only, node behavioural analysis can be performed by exploiting the graph information encoded in a connection network. Network traffic, however, is temporal data and extracting graph information without a fixed time scope may only unveil macro-dynamics that are less related to cybersecurity threats. To address these issues, a threefold approach is proposed here: firstly, temporal dissection for extracting graph-based information is applied. As the resulting graphs are typically affected by class imbalance (i.e. malicious nodes are under-represented), two novel graph data-level preprocessing techniques - R-hybrid and SM-hybrid - are introduced, which focus on exploiting the most relevant graph substructures. Finally, a Neural Network (NN) and two Graph Convolutional Network (GCN) approaches are compared when performing node behaviour classification. Furthermore, we compare the node classification performance of these supervised models with traditional unsupervised anomaly detection techniques. Results show that temporal dissection parameters affected classification performance, while the data-level preprocessing strategies reduced class imbalance and led to improved supervised node behaviour classification, outperforming anomaly detection models. In particular, Neural Network (NN) outperformed Graph Convolutional Network (GCN) approaches for two attack families and was less affected by class imbalance, yet one GCN performed best overall. The presented study successfully applies a temporal graph-based approach for malicious actor detection in network traffic data.
  • PublicationOpen Access
    Metrics for dataset demographic bias: a case study on facial expression recognition
    (IEEE, 2024) Domínguez Catena, Iris; Paternain Dallo, Daniel; Galar Idoate, Mikel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra - Nafarroako Unibertsitate Publikoa
    Demographic biases in source datasets have been shown as one of the causes of unfairness and discrimination in the predictions of Machine Learning models. One of the most prominent types of demographic bias are statistical imbalances in the representation of demographic groups in the datasets. In this paper, we study the measurement of these biases by reviewing the existing metrics, including those that can be borrowed from other disciplines. We develop a taxonomy for the classification of these metrics, providing a practical guide for the selection of appropriate metrics. To illustrate the utility of our framework, and to further understand the practical characteristics of the metrics, we conduct a case study of 20 datasets used in Facial Emotion Recognition (FER), analyzing the biases present in them. Our experimental results show that many metrics are redundant and that a reduced subset of metrics may be sufficient to measure the amount of demographic bias. The paper provides valuable insights for researchers in AI and related fields to mitigate dataset bias and improve the fairness and accuracy of AI models.
  • PublicationOpen Access
    Pushing the limits of Sentinel-2 for building footprint extraction
    (IEEE, 2022) Ayala Lauroba, Christian; Aranda, Carlos; Galar Idoate, Mikel; Institute of Smart Cities - ISC
    Building footprint maps are of high importance nowadays since a wide range of services relies on them to work. However, activities to keep these maps up-to-date are costly and time-consuming due to the great deal of human intervention required. Several automation attempts have been carried out in the last decade aiming at fully automatizing them. However, taking into account the complexity of the task and the current limitations of semantic segmentation deep learning models, the vast majority of approaches rely on aerial imagery (<1 m). As a result, prohibitive costs and high revisit times prevent the remote sensing community from maintaining up-to-date building maps. This work proposes a novel deep learning architecture to accurately extract building footprints from high resolution satellite imagery (10 m). Accordingly, super-resolution and semantic segmentation techniques have been fused to make it possible not only to improve the building's boundary definition but also to detect buildings with sub-pixel width. As a result, fine-grained building maps at 2.5 m are generated using Sentinel-2 imagery, closing the gap between satellite and aerial semantic segmentation.
  • PublicationOpen Access
    A study of OWA operators learned in convolutional neural networks
    (MDPI, 2021) Domínguez Catena, Iris; Paternain Dallo, Daniel; Galar Idoate, Mikel; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Ordered Weighted Averaging (OWA) operators have been integrated in Convolutional Neural Networks (CNNs) for image classification through the OWA layer. This layer lets the CNN integrate global information about the image in the early stages, where most CNN architectures only allow for the exploitation of local information. As a side effect of this integration, the OWA layer becomes a practical method for the determination of OWA operator weights, which is usually a difficult task that complicates the integration of these operators in other fields. In this paper, we explore the weights learned for the OWA operators inside the OWA layer, characterizing them through their basic properties of orness and dispersion. We also compare them to some families of OWA operators, namely the Binomial OWA operator, the Stancu OWA operator and the expo-nential RIM OWA operator, finding examples that are currently impossible to generalize through these parameterizations.
  • PublicationOpen Access
    Bitcoin and cybersecurity: temporal dissection of blockchain data to unveil changes in entity behavioral patterns
    (MDPI, 2019) Zola, Francesco; Bruse, Jan Lukas; Eguimendia, María; Galar Idoate, Mikel; Orduna Urrutia, Raúl; Institute of Smart Cities - ISC
    The Bitcoin network not only is vulnerable to cyber-attacks but currently represents the most frequently used cryptocurrency for concealing illicit activities. Typically, Bitcoin activity is monitored by decreasing anonymity of its entities using machine learning-based techniques, which consider the whole blockchain. This entails two issues: first, it increases the complexity of the analysis requiring higher efforts and, second, it may hide network micro-dynamics important for detecting short-term changes in entity behavioral patterns. The aim of this paper is to address both issues by performing a 'temporal dissection' of the Bitcoin blockchain, i.e., dividing it into smaller temporal batches to achieve entity classification. The idea is that a machine learning model trained on a certain time-interval (batch) should achieve good classification performance when tested on another batch if entity behavioral patterns are similar. We apply cascading machine learning principles'a type of ensemble learning applying stacking techniques'introducing a 'k-fold cross-testing' concept across batches of varying size. Results show that blockchain batch size used for entity classification could be reduced for certain classes (Exchange, Gambling, and eWallet) as classification rates did not vary significantly with batch size; suggesting that behavioral patterns did not change significantly over time. Mixer and Market class detection, however, can be negatively affected. A deeper analysis of Mining Pool behavior showed that models trained on recent data perform better than models trained on older data, suggesting that 'typical' Mining Pool behavior may be represented better by recent data. This work provides a first step towards uncovering entity behavioral changes via temporal dissection of blockchain data.
  • PublicationOpen Access
    Additional feature layers from ordered aggregations for deep neural networks
    (IEEE, 2020) Domínguez Catena, Iris; Paternain Dallo, Daniel; Galar Idoate, Mikel; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In the last years we have seen huge advancements in the area of Machine Learning, specially with the use of Deep Neural Networks. One of the most relevant examples is in image classification, where convolutional neural networks have shown to be a vital tool, hard to replace with any other techniques. Although aggregation functions, such as OWA operators, have been previously used on top of neural networks, usually to aggregate the outputs of different networks or systems (ensembles), in this paper we propose and explore a new way of using OWA aggregations in deep learning. We implement OWA aggregations as a new layer inside a convolutional neural network. These layers are used to learn additional order-based information from the feature maps of a certain layer, and then the newly generated information is used as a complement input for the following layers. We carry out several tests introducing the new layer in a VGG13-based reference network and show that this layer introduces new knowledge into the network without substantially increasing training times.
  • PublicationOpen Access
    On the influence of interval normalization in IVOVO fuzzy multi-class classifier
    (Springer, 2019) Uriz Martín, Mikel Xabier; Paternain Dallo, Daniel; Bustince Sola, Humberto; Galar Idoate, Mikel; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA13
    IVOVO stands for Inverval-Valued One-Vs-One and is the combination of IVTURS fuzzy classifier and the One-Vs-One strategy. This method is designed to improve the performance of IVTURS in multi-class problems, by dividing the original problem into simpler binary ones. The key issue with IVTURS is that interval-valued confidence degrees for each class are returned and, consequently, they have to be normalized for applying a One-Vs-One strategy. However, there is no consensus on which normalization method should be used with intervals. In IVOVO, the normalization method based on the upper bounds was considered as it maintains the admissible order between intervals and also the proportion of ignorance, but no further study was developed. In this work, we aim to extend this analysis considering several normalizations in the literature. We will study both their main theoretical properties and empirical performance in the final results of IVOVO.
  • PublicationOpen Access
    A deep learning approach to an enhanced building footprint and road detection in high-resolution satellite imagery
    (MDPI, 2021) Ayala Lauroba, Christian; Sesma Redín, Rubén; Aranda, Carlos; Galar Idoate, Mikel; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako Gobernua
    The detection of building footprints and road networks has many useful applications including the monitoring of urban development, real-time navigation, etc. Taking into account that a great deal of human attention is required by these remote sensing tasks, a lot of effort has been made to automate them. However, the vast majority of the approaches rely on very high-resolution satellite imagery (<2.5 m) whose costs are not yet affordable for maintaining up-to-date maps. Working with the limited spatial resolution provided by high-resolution satellite imagery such as Sentinel-1 and Sentinel-2 (10 m) makes it hard to detect buildings and roads, since these labels may coexist within the same pixel. This paper focuses on this problem and presents a novel methodology capable of detecting building and roads with sub-pixel width by increasing the resolution of the output masks. This methodology consists of fusing Sentinel-1 and Sentinel-2 data (at 10 m) together with OpenStreetMap to train deep learning models for building and road detection at 2.5 m. This becomes possible thanks to the usage of OpenStreetMap vector data, which can be rasterized to any desired resolution. Accordingly, a few simple yet effective modifications of the U-Net architecture are proposed to not only semantically segment the input image, but also to learn how to enhance the resolution of the output masks. As a result, generated mappings quadruplicate the input spatial resolution, closing the gap between satellite and aerial imagery for building and road detection. To properly evaluate the generalization capabilities of the proposed methodology, a data-set composed of 44 cities across the Spanish territory have been considered and divided into training and testing cities. Both quantitative and qualitative results show that high-resolution satellite imagery can be used for sub-pixel width building and road detection following the proper methodology.