Person:
Amorena Zabalza, Beatriz

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Amorena Zabalza

First Name

Beatriz

person.page.departamento

Instituto de Agrobiotecnología (IdAB)

person.page.instituteName

ORCID

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 21
  • PublicationOpen Access
    Maedi-visna virus infection of ovine mammary epithelial cells
    (EDP Sciences, 2006) Bolea, Rosa; Monleón, Eva; Carrasco, Librado; Vargas, Antonia; Andrés Cara, Damián de; Amorena Zabalza, Beatriz; Badiola, Juan José; Luján, Lluís; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    The aim of this work was to perform a complete study of maedi-visna virus (MVV) infected mammary glands of naturally-infected sheep, and to determine if cells other than macrophages undergo a productive viral infection in this organ. Fifteen seropositive and two seronegative ewes were selected from MVV-infected flocks on the basis of clinical indurative mastitis and three sheep from an MVV-free flock. Within the mammary gland, MVV-positive cells were located by immunohistochemistry in the stroma and the epithelial alveolar barrier, most likely the ovine mammary epithelial cells (OMEC) of the acini. In situ hybridization confirmed these findings. Ultrastructural studies showed the presence of lentivirus-like particles budding off the cell surface in the alveolar barrier and also free in the acinar lumen. The presence of mammary histopathological lesions and MVV together with clear indications of productive infection (demonstration of a cytopathic effect in OMEC cultures and infection of co-cultures) were observed in the 15 seropositive and one of the seronegative sheep from the infected flock. These findings demonstrate that the OMEC were infected in vivo and probably underwent productive infection when studied ex-vivo. The OMEC of MVV-free sheep, which had subsequently been infected in vitro with MVV, also showed productive infection when challenged in vitro, confirming the replication of MVV in OMEC in vitro. The presence of MVV-infected OMEC in the mammary gland from infected animals, the productive infection in these OMEC and the release of lentiviral particles to the acinar lumen may have relevance in the pathogenesis and transmission of MVV infection.
  • PublicationOpen Access
    In vivo monitoring of Staphylococcus aureus biofilm infections and antimicrobial therapy by [18F]fluoro-deoxyglucose–MicroPET in a mouse model
    (American Society for Microbiology, 2014) Garrido González, Victoria; Collantes, María; Barberán, Montserrat; Peñuelas, Iván; Arbizu, Javier; Amorena Zabalza, Beatriz; Grilló Dolset, María Jesús; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua, IIM13002.RI1
    A mouse model was developed for in vivo monitoring of infection and the effect of antimicrobial treatment against Staphylococcus aureus biofilms, using the [18F]fluoro-deoxyglucose–MicroPET ([18F]FDG-MicroPET) image technique. In the model, sealed Vialon catheters were briefly precolonized with S. aureus strains ATCC 15981 or V329, which differ in cytotoxic properties and biofilm matrix composition. After subcutaneous implantation of catheters in mice, the S. aureus strain differences found in bacterial counts and the inflammatory reaction triggered were detected by the regular bacteriological and histological procedures and also by [18F]FDG-MicroPET image signal intensity determinations in the infection area and regional lymph node. Moreover, [18F]FDG-MicroPET imaging allowed the monitoring of the rifampin treatment effect, identifying the periods of controlled infection and those of reactivated infection due to the appearance of bacteria naturally resistant to rifampin. Overall, the mouse model developed may be useful for noninvasive in vivo determinations in studies on S. aureus biofilm infections and assessment of new therapeutic approaches.
  • PublicationOpen Access
    Detection of PrPSc in lung and mammary gland is favored by the presence of Visna/maedi virus lesions in naturally coinfected sheep
    (EDP Sciences, 2010) Salazar, Eider; Monleón, Eva; Bolea, Rosa; Acín, Cristina; Pérez, Marta María; Álvarez, Neila; Leginagoikoa, Iratxe; Juste, Ramón; Minguijón, Esmeralda; Reina Arias, Ramsés; Glaría Ezquer, Idoia; Berriatua, Eduardo; Andrés Cara, Damián de; Badiola, Juan José; Amorena Zabalza, Beatriz; Luján, Lluís; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    There are few reports on the pathogenesis of scrapie (Sc) and Visna/maedi virus (VMV) coinfections. The aim of this work was to study in vivo as well as post mortem both diseases in 91 sheep. Diagnosis of Sc and VMV infections allowed the distribution of animals into five groups according to the presence (+) or absence ( ) of infection by Sc and VMV: Sc /VMV , Sc /VMV+, Sc+/VMV and Sc+/ VMV+. The latter was divided into two subgroups, with and without VMV-induced lymphoid follicle hyperplasia (LFH), respectively. In both the lung and mammary gland, PrPSc deposits were found in the germinal center of hyperplasic lymphoid follicles in the subgroup of Sc+/VMV+ having VMV-induced LFH. This detection was always associated with (and likely preceded by) PrPSc observation in the corresponding lymph nodes. No PrPSc was found in other VMV-associated lesions. Animals suffering from scrapie had a statistically significantly lower mean age than the scrapie free animals at the time of death, with no apparent VMV influence. ARQ/ARQ genotype was the most abundant among the 91 ewes and the most frequent in scrapie-affected sheep. VMV infection does not seem to influence the scrapie risk group distribution among animals from the five groups established in this work. Altogether, these data indicate that certain VMVinduced lesions can favor PrPSc deposits in Sc non-target organs such as the lung and the mammary gland, making this coinfection an interesting field that warrants further research for a better comprehension of the pathogenesis of both diseases.
  • PublicationOpen Access
    Bap, a Staphylococcus aureus surface protein involved in biofilm formation
    (American Society for Microbiology, 2001) Cucarella, Carme; Solano Goñi, Cristina; Valle Turrillas, Jaione; Amorena Zabalza, Beatriz; Lasa Uzcudun, Íñigo; Penadés, José R.; Nekazaritza Ekoizpena; Producción Agraria; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua
    Identification of new genes involved in biofilm formation is needed to understand the molecular basis of strain variation and the pathogenic mechanisms implicated in chronic staphylococcal infections. A biofilm-producing Staphylococcus aureus isolate was used to generate biofilm-negative transposon (Tn917) insertion mutants. Two mutants were found with a significant decrease in attachment to inert surfaces (early adherence), intercellular adhesion, and biofilm formation. The transposon was inserted at the same locus in both mutants. This locus (bap [for biofilm associated protein]) encodes a novel cell wall associated protein of 2,276 amino acids (Bap), which shows global organizational similarities to surface proteins of gram-negative (Pseudomonas aeruginosa andSalmonella enterica serovar Typhi) and gram-positive (Enteroccocus faecalis) microorganisms. Bap's core region represents 52% of the protein and consists of 13 successive nearly identical repeats, each containing 86 amino acids. bap was present in a small fraction of bovine mastitis isolates (5% of the 350S. aureus isolates tested), but it was absent from the 75 clinical human S. aureus isolates analyzed. All staphylococcal isolates harboring bap were highly adherent and strong biofilm producers. In a mouse infection modelbap was involved in pathogenesis, causing a persistent infection.
  • PublicationOpen Access
    Ovine TRIM5α can restrict visna/maedi virus
    (American Society for Microbiology, 2012) Jauregui, Paula; Crespo Otano, Helena; Glaría Ezquer, Idoia; Luján, Lluís; Contreras, A.; Rosati, Sergio; Andrés Cara, Damián de; Amorena Zabalza, Beatriz; Towers, G. J.; Reina Arias, Ramsés; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua, IIQ14064.RI1
    The restrictive properties of tripartite motif-containing 5 alpha (TRIM5α) from small ruminant species have not been explored. Here, we identify highly similar TRIM5α sequences in sheep and goats. Cells transduced with ovine TRIM5α effectively restricted the lentivirus visna/maedi virus DNA synthesis. Proteasome inhibition in cells transduced with ovine TRIM5α restored restricted viral DNA synthesis, suggesting a conserved mechanism of restriction. Identification of TRIM5α active molecular species may open new prophylactic strategies against lentiviral infections.
  • PublicationOpen Access
    Small ruminant lentiviruses: genetic variability, tropism and diagnosis
    (MDPI, 2013) Ramírez Álvarez, Hugo; Reina Arias, Ramsés; Amorena Zabalza, Beatriz; Andrés Cara, Damián de; Martínez, Humberto A.; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Small ruminant lentiviruses (SRLV) cause a multisystemic chronic disease affecting animal production and welfare. SRLV infections are spread across the world with the exception of Iceland. Success in controlling SRLV spread depends largely on the use of appropriate diagnostic tools, but the existence of a high genetic/antigenic variability among these viruses, the fluctuant levels of antibody against them and the low viral loads found in infected individuals hamper the diagnostic efficacy. SRLV have a marked in vivo tropism towards the monocyte/macrophage lineage and attempts have been made to identify the genome regions involved in tropism, with two main candidates, the LTR and env gene, since LTR contains primer binding sites for viral replication and the env-encoded protein (SU ENV), which mediates the binding of the virus to the host’s cell and has hypervariable regions to escape the humoral immune response. Once inside the host cell, innate immunity may interfere with SRLV replication, but the virus develops counteraction mechanisms to escape, multiply and survive, creating a quasi-species and undergoing compartmentalization events. So far, the mechanisms of organ tropism involved in the development of different disease forms (neurological, arthritic, pulmonary and mammary) are unknown, but different alternatives are proposed. This is an overview of the current state of knowledge on SRLV genetic variability and its implications in tropism as well as in the development of alternative diagnostic assays.
  • PublicationOpen Access
    Role of biofilm-associated protein bap in the pathogenesis of bovine Staphylococcus aureus
    (American Society for Microbiology, 2004) Cucarella, Carme; Tormo Más, María Ángeles; Ubeda, Carles; Trotonda, María Pilar; Monzon, Marta; Peris, Cristòfol; Amorena Zabalza, Beatriz; Lasa Uzcudun, Íñigo; Penadés, José R.; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Staphylococcus aureus is a common cause of intramammary infections, which frequently become chronic, associated with the ability of the bacteria to produce biofilm. Here, we report a relationship between the ability to produce chronic bovine mastitis and biofilm formation. We have classified bovine mastitis S. aureus isolates into three groups based on the presence of particular genetic elements required for biofilm formation: group 1 (ica+ bap+), group 2 (ica+, bap negative), and group 3 (ica negative, bap negative). Overall, animals naturally infected with group 1 and 2 isolates had a lower milk somatic cell count than those infected with isolates of group 3. In addition, Bap-positive isolates were significantly more able to colonize and persist in the bovine mammary gland in vivo and were less susceptible to antibiotic treatments when forming biofilms in vitro. Analysis of the structural bap gene revealed the existence of alternate forms of expression of the Bap protein in S. aureus isolates obtained under field conditions throughout the animal's life. The presence of anti-Bap antibodies in serum samples taken from animals with confirmed S. aureus infections indicated the production of Bap during infection. Furthermore, disruption of the ica operon in a bap-positive strain had no effect on in vitro biofilm formation, a finding which strongly suggested that Bap could compensate for the deficiency of the PIA/PNAG product (a biofilm matrix polysaccharide). Altogether, these results demonstrate that, in the bovine intramammary gland, the presence of Bap may facilitate a biofilm formation connected with the persistence of S. aureus.
  • PublicationOpen Access
    Lack of relationship between Visna/maedi infection and scrapie resistance genetic markers
    (Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), 2014) Salazar, Eider; Berriatua, Eduardo; Pérez, Marta María; Marín, Belén; Acín, Cristina; Martín Burriel, Inmaculada; Reina Arias, Ramsés; Andrés Cara, Damián de; Amorena Zabalza, Beatriz; Badiola, Juan José; Luján, Lluís; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    The relationship between Visna/maedi virus (VMV) antibody status and scrapie genetic resistance of 10,611 Rasa Aragonesa sheep from 17 flocks in Aragón (Spain) was investigated. The fifteen most common PRNP gene haplotypes and genotypes were identified and the genotypes were classified into the corresponding scrapie risk groups (groups 1 to 5). ARQ (93.3%) and ARR (31.8%) were the most common haplotypes and ARQ/ARQ (56%) and ARR/ARQ (25.6%) were the most common genotypes. The frequencies of scrapie risk groups 1, 2, 3, 4 and 5 were 3.3%, 27.3%, 63.5%, 1.2% and 4.8%, respectively. Overall Visna/maedi seroprevalence was 53% and flock seroprevalence ranged between 21-86%. A random effects logistic regression model indicated that sheep VMV serological status (outcome variable) was not associated with any particular scrapie risk group. Instead, VMV seropositivity progressively increased with age, was signif icantly greater in females compared to males and varied between flocks. The absence of a relationship between VMV infection and scrapie genotypes is important for VMV control and specifically for sheep participating in an ELISA-based Visna/maedi control program.
  • PublicationOpen Access
    Expression of the biofilm-associated protein interferes with host protein receptors of Staphylococcus aureus and alters the infective process
    (American Society for Microbiology, 2002) Cucarella, Carme; Tormo Más, María Ángeles; Knecht, Erwin; Amorena Zabalza, Beatriz; Lasa Uzcudun, Íñigo; Foster, Timothy J.; Penadés, José R.; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    The adherence of Staphylococcus aureus to soluble proteins and extracellular-matrix components of the host is one of the key steps in the pathogenesis of staphylococcal infections. S. aureus presents a family of adhesins called MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) that specifically recognize host matrix components. We examined the influence of biofilm-associated protein (Bap) expression on S. aureus adherence to host proteins, epithelial cell cultures, and mammary gland sections and on colonization of the mammary gland in an in vivo infection model. Bap-positive strain V329 showed lower adherence to immobilized fibrinogen and fibronectin than isogenic Bap-deficient strain m556. Bacterial adherence to histological sections of mammary gland and bacterial internalization into 293 cells were significantly lower in the Bap-positive strains. In addition, the Bap-negative strain showed significantly higher colonization in vivo of sheep mammary glands than the Bap-positive strain. Taken together, these results strongly suggest that the expression of the Bap protein interferes with functional properties of the MSCRAMM proteins, preventing initial bacterial attachment to host tissues and cellular internalization.
  • PublicationOpen Access
    Identification of the ovine mannose receptor and its possible role in Visna/Maedi virus infection
    (BioMed Central, 2011) Crespo Otano, Helena; Reina Arias, Ramsés; Glaría Ezquer, Idoia; Ramírez Álvarez, Hugo; Andrés, Ximena de; Jauregui, Paula; Luján, Lluís; Martínez Pomares, Luisa; Amorena Zabalza, Beatriz; Andrés Cara, Damián de; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    This study aims to characterize the mannose receptor (MR) gene in sheep and its role in ovine visna/maedi virus (VMV) infection. The deduced amino acid sequence of ovine MR was compatible with a transmembrane protein having a cysteine-rich ricin-type amino-terminal region, a fibronectin type II repeat, eight tandem C-type lectin carbohydrate-recognition domains (CRD), a transmembrane region, and a cytoplasmic carboxy-terminal tail. The ovine and bovine MR sequences were closer to each other compared to human or swine MR. Concanavalin A (ConA) inhibited VMV productive infection, which was restored by mannan totally in ovine skin fibroblasts (OSF) and partially in blood monocyte-derived macrophages (BMDM), suggesting the involvement of mannosylated residues of the VMV ENV protein in the process. ConA impaired also syncytium formation in OSF transfected with an ENV-encoding pN3-plasmid. MR transcripts were found in two common SRLV targets, BMDM and synovial membrane (GSM) cells, but not in OSF. Viral infection of BMDM and especially GSM cells was inhibited by mannan, strongly suggesting that in these cells the MR is an important route of infection involving VMV Env mannosylated residues. Thus, at least three patterns of viral entry into SRLV-target cells can be proposed, involving mainly MR in GSM cells (target in SRLV-induced arthritis), MR in addition to an alternative route in BMDM (target in SRLV infections), and an alternative route excluding MR in OSF (target in cell culture). Different routes of SRLV infection may thus coexist related to the involvement of MR differential expression.