Pereira Dimuro, Graçaliz

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Pereira Dimuro

First Name

Graçaliz

person.page.departamento

Automática y Computación

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 42
  • PublicationOpen Access
    Abstract homogeneous functions and consistently influenced/disturbed multi-expert decision making
    (IEEE, 2021) Santiago, Regivan; Bedregal, Benjamin; Pereira Dimuro, Graçaliz; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Fardoun, Habib; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    In this paper we propose a new generalization for the notion of homogeneous functions. We show some properties and how it appears in some scenarios. Finally we show how this generalization can be used in order to provide a new paradigm for decision making theory called consistent influenced/disturbed decision making. In order to illustrate the applicability of this new paradigm, we provide a toy example.
  • PublicationOpen Access
    Additively generated (a,b)-implication functions*
    (IEEE, 2023) Santos, Helida; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Paiva, Rui; Lucca, Giancarlo; Moura, Bruno; Cruz, Anderson; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Some problems involving classification through neural networks are known to use inputs out of the scope of the unit interval. Therefore, defining operations on arbitrary closed real intervals may be an interesting strategy to tackle this issue and enhance those application environments. In this paper we follow the ideas already discussed in the literature regarding (a,b)-fusion functions, and (a,b)-negations, to provide a new way to construct implication functions. The main idea is to construct an operator using additively generated functions that preserve the properties required by implication functions.
  • PublicationOpen Access
    VCI-LSTM: Vector choquet integral-based long short-term memory
    (IEEE, 2022) Ferrero Jaurrieta, Mikel; Takáč, Zdenko; Fernández Fernández, Francisco Javier; Horanská, Lubomíra; Pereira Dimuro, Graçaliz; Montes Rodríguez, Susana; Díaz, Irene; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Choquet integral is a widely used aggregation operator on one-dimensional and interval-valued information, since it is able to take into account the possible interaction among data. However, there are many cases where the information taken into account is vectorial, such as Long Short-Term Memories (LSTM). LSTM units are a kind of Recurrent Neural Networks that have become one of the most powerful tools to deal with sequential information since they have the power of controlling the information flow. In this paper, we first generalize the standard Choquet integral to admit an input composed by $n$-dimensional vectors, which produces an $n$-dimensional vector output. We study several properties and construction methods of vector Choquet integrals. Then, we use this integral in the place of the summation operator, introducing in this way the new VCI-LSTM architecture. Finally, we use the proposed VCI-LSTM to deal with two problems: sequential image classification and text classification.
  • PublicationOpen Access
    Generalizing max pooling via (a, b)-grouping functions for convolutional neural networks
    (Elsevier, 2023) Rodríguez Martínez, Iosu; Da Cruz Asmus, Tiago; Pereira Dimuro, Graçaliz; Herrera, Francisco; Takáč, Zdenko; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Due to their high adaptability to varied settings and effective optimization algorithm, Convolutional Neural Networks (CNNs) have set the state-of-the-art on image processing jobs for the previous decade. CNNs work in a sequential fashion, alternating between extracting significant features from an input image and aggregating these features locally through ‘‘pooling" functions, in order to produce a more compact representation. Functions like the arithmetic mean or, more typically, the maximum are commonly used to perform this downsampling operation. Despite the fact that many studies have been devoted to the development of alternative pooling algorithms, in practice, ‘‘max-pooling" still equals or exceeds most of these possibilities, and has become the standard for CNN construction. In this paper we focus on the properties that make the maximum such an efficient solution in the context of CNN feature downsampling and propose its replacement by grouping functions, a family of functions that share those desirable properties. In order to adapt these functions to the context of CNNs, we present (𝑎, 𝑏)- grouping functions, an extension of grouping functions to work with real valued data. We present different construction methods for (𝑎, 𝑏)-grouping functions, and demonstrate their empirical applicability for replacing max-pooling by using them to replace the pooling function of many well-known CNN architectures, finding promising results.
  • PublicationOpen Access
    A generalization of the Sugeno integral to aggregate interval-valued data: an application to brain computer interface and social network analysis
    (Elsevier, 2022) Fumanal Idocin, Javier; Takáč, Zdenko; Horanská, Lubomíra; Da Cruz Asmus, Tiago; Pereira Dimuro, Graçaliz; Vidaurre Arbizu, Carmen; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Institute of Smart Cities - ISC
    Intervals are a popular way to represent the uncertainty related to data, in which we express the vagueness of each observation as the width of the interval. However, when using intervals for this purpose, we need to use the appropriate set of mathematical tools to work with. This can be problematic due to the scarcity and complexity of interval-valued functions in comparison with the numerical ones. In this work, we propose to extend a generalization of the Sugeno integral to work with interval-valued data. Then, we use this integral to aggregate interval-valued data in two different settings: first, we study the use of intervals in a brain-computer interface; secondly, we study how to construct interval-valued relationships in a social network, and how to aggregate their information. Our results show that interval-valued data can effectively model some of the uncertainty and coalitions of the data in both cases. For the case of brain-computer interface, we found that our results surpassed the results of other interval-valued functions.
  • PublicationOpen Access
    Aggregation functions based on the Choquet integral applied to image resizing
    (Atlantis Press, 2019) Bueno, Jéssica C. S.; Dias, Camila A.; Pereira Dimuro, Graçaliz; Santos, Helida; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    The rising volume of data and its high complexity has brought the need of developing increasingly efficient knowledge extraction techniques, which demands efficiency both in computational cost and in accuracy. Most of problems that are handled by these techniques has complex information to be identified. So, machine learning methods are frequently used, where a variety of functions can be applied in the different steps that are employed in their architecture. One of them is the use of aggregation functions aiming at resizing images. In this context, we introduce a study of aggregation functions based on the Choquet integral, whose main characteristic in comparison with other aggregation functions is that it considers, through fuzzy measure, the interaction between the elements to be aggregated. Thus, our main goal is to present an evaluation study of the performance of the standard Choquet integral the and copula-based generalization of the Choquet integral in relation to the maximum and mean functions, looking for results that may be better than the aggregation functions commonly applied. The results of such comparisons are promising, when evaluated through image quality metrics.
  • PublicationOpen Access
    d-XC integrals: on the generalization of the expanded form of the Choquet integral by restricted dissimilarity functions and their applications
    (IEEE, 2022) Wieczynski, Jonata; Fumanal Idocin, Javier; Lucca, Giancarlo; Borges, Eduardo N.; Da Cruz Asmus, Tiago; Emmendorfer, Leonardo R.; Bustince Sola, Humberto; Pereira Dimuro, Graçaliz; Automática y Computación; Automatika eta Konputazioa; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Restricted dissimilarity functions (RDFs) were introduced to overcome problems resulting from the adoption of the standard difference. Based on those RDFs, Bustince et al. introduced a generalization of the Choquet integral (CI), called d-Choquet integral, where the authors replaced standard differences with RDFs, providing interesting theoretical results. Motivated by such worthy properties, joint with the excellent performance in applications of other generalizations of the CI (using its expanded form, mainly), this paper introduces a generalization of the expanded form of the standard Choquet integral (X-CI) based on RDFs, which we named d-XC integrals. We present not only relevant theoretical results but also two examples of applications. We apply d-XC integrals in two problems in decision making, namely a supplier selection problem (which is a multi-criteria decision making problem) and a classification problem in signal processing, based on motor-imagery brain-computer interface (MI-BCI). We found that two d-XC integrals provided better results when compared to the original CI in the supplier selection problem. Besides that, one of the d-XC integrals performed better than any previous MI-BCI results obtained with this framework in the considered signal processing problem.
  • PublicationOpen Access
    Type-(2, k) overlap indices
    (IEEE, 2022) Roldán López de Hierro, Antonio Francisco; Roldán, Concepción; Tíscar, Miguel Ángel; Takáč, Zdenko; Santiago, Regivan; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Pereira Dimuro, Graçaliz; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Automatic image detection is one of the most im- portant areas in computing due to its potential application in numerous real-world scenarios. One important tool to deal with that is called overlap indices. They were introduced as a procedure to provide the maximum lack of knowledge when comparing two fuzzy objects. They have been successfully applied in the following fields: image processing, fuzzy rule-based systems, decision making and computational brain interfaces. This notion of overlap indices is also necessary for applications in which type-2 fuzzy sets are required. In this paper we introduce the notion of type-(2, k) overlap index (k 0, 1, 2) in the setting of type-2 fuzzy sets. We describe both the reasons that have led to this notion and the relationships that naturally arise among the algebraic underlying structures. Finally, we illustrate how type- (2, k) overlap indices can be employed in the setting of fuzzy rule-based systems when the involved objects are type-2 fuzzy sets.
  • PublicationOpen Access
    General grouping functions
    (Springer, 2020) Santos, Helida; Pereira Dimuro, Graçaliz; Da Cruz Asmus, Tiago; Sanz Delgado, José Antonio; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    Some aggregation functions that are not necessarily associative, namely overlap and grouping functions, have called the attention of many researchers in the recent past. This is probably due to the fact that they are a richer class of operators whenever one compares with other classes of aggregation functions, such as t-norms and t-conorms, respectively. In the present work we introduce a more general proposal for disjunctive n-ary aggregation functions entitled general grouping functions, in order to be used in problems that admit n dimensional inputs in a more flexible manner, allowing their application in different contexts. We present some new interesting results, like the characterization of that operator and also provide different construction methods.
  • PublicationOpen Access
    Funções de agregação baseadas em integral de Choquet aplicadas em redimensionalização de imagens
    (Universidade Passo Fundo, 2019) Bueno, Jéssica C. S.; Dias, Camila A.; Pereira Dimuro, Graçaliz; Borges, Eduardo N.; Botelho, Silvia S. C.; Mattos, Viviane L. D. de; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    The increasing data volume, coupled with the high complexity of these data, has generated the need to develop increasingly efficient knowledge extraction techniques, both in computational cost and precision. Most of the problems that are addressed by these techniques have complex information to be identified. For this, machine learning methods are used, where these methods use a variety of functions inside the different steps that are employed in their architectures. One of these consists in the use of aggregation functions to resize images. In this context, a study of aggregation functions based on the Choquet integral is presented, where the main feature of Choquet integral, in comparison with other aggregation functions, resides in the fact that it considers, through the fuzzy measure, the interaction between the elements to be aggregated. Thus, an evaluation study of the performance of the standard Choquet integral functions is presented (Choquet integral based on Copula in relation to the maximum and average functions) looking for results that may be better than the usual applied aggregation functions. The results of such comparisons are promising when evaluated through measures of image quality.