# Person: Pereira Dimuro, Graçaliz

Loading...

## Email Address

## person.page.identifierURI

## Birth Date

## Research Projects

## Organizational Units

## Job Title

## Last Name

Pereira Dimuro

## First Name

Graçaliz

## person.page.departamento

Automática y Computación

## person.page.instituteName

## ORCID

0000-0001-6986-9888

## person.page.upna

811336

## Name

18 results Back to results

### Filters

#### Author

#### Subject

#### Date

#### Has files

#### Item Type

### Settings

Sort By

Results per page

## Search Results

Now showing 1 - 10 of 18

Publication Open Access VCI-LSTM: Vector choquet integral-based long short-term memory(IEEE, 2022) Ferrero Jaurrieta, Mikel; Takáč, Zdenko; Fernández Fernández, Francisco Javier; Horanská, Lubomíra; Pereira Dimuro, Graçaliz; Montes, Susana; Díaz, Irene; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaShow more Choquet integral is a widely used aggregation operator on one-dimensional and interval-valued information, since it is able to take into account the possible interaction among data. However, there are many cases where the information taken into account is vectorial, such as Long Short-Term Memories (LSTM). LSTM units are a kind of Recurrent Neural Networks that have become one of the most powerful tools to deal with sequential information since they have the power of controlling the information flow. In this paper, we first generalize the standard Choquet integral to admit an input composed by $n$-dimensional vectors, which produces an $n$-dimensional vector output. We study several properties and construction methods of vector Choquet integrals. Then, we use this integral in the place of the summation operator, introducing in this way the new VCI-LSTM architecture. Finally, we use the proposed VCI-LSTM to deal with two problems: sequential image classification and text classification.Show more Publication Open Access Type-(2, k) overlap indices(IEEE, 2022) Roldán López de Hierro, Antonio Francisco; Roldán, Concepción; Tíscar, Miguel Ángel; Takáč, Zdenko; Santiago, Regivan; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Pereira Dimuro, Graçaliz; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaShow more Automatic image detection is one of the most im- portant areas in computing due to its potential application in numerous real-world scenarios. One important tool to deal with that is called overlap indices. They were introduced as a procedure to provide the maximum lack of knowledge when comparing two fuzzy objects. They have been successfully applied in the following fields: image processing, fuzzy rule-based systems, decision making and computational brain interfaces. This notion of overlap indices is also necessary for applications in which type-2 fuzzy sets are required. In this paper we introduce the notion of type-(2, k) overlap index (k 0, 1, 2) in the setting of type-2 fuzzy sets. We describe both the reasons that have led to this notion and the relationships that naturally arise among the algebraic underlying structures. Finally, we illustrate how type- (2, k) overlap indices can be employed in the setting of fuzzy rule-based systems when the involved objects are type-2 fuzzy sets.Show more Publication Embargo A generalization of the Sugeno integral to aggregate interval-valued data: an application to brain computer interface and social network analysis(Elsevier, 2022) Fumanal Idocin, Javier; Takáč, Zdenko; Horanská, Lubomíra; Da Cruz Asmus, Tiago; Pereira Dimuro, Graçaliz; Vidaurre Arbizu, Carmen; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Institute of Smart Cities - ISCShow more Intervals are a popular way to represent the uncertainty related to data, in which we express the vagueness of each observation as the width of the interval. However, when using intervals for this purpose, we need to use the appropriate set of mathematical tools to work with. This can be problematic due to the scarcity and complexity of interval-valued functions in comparison with the numerical ones. In this work, we propose to extend a generalization of the Sugeno integral to work with interval-valued data. Then, we use this integral to aggregate interval-valued data in two different settings: first, we study the use of intervals in a brain-computer interface; secondly, we study how to construct interval-valued relationships in a social network, and how to aggregate their information. Our results show that interval-valued data can effectively model some of the uncertainty and coalitions of the data in both cases. For the case of brain-computer interface, we found that our results surpassed the results of other interval-valued functions.Show more Publication Open Access Multimodal fuzzy fusion for enhancing the motor-imagery-based brain computer interface(IEEE, 2019) Ko, Li-Wei; Lu, Yi-Chen; Bustince Sola, Humberto; Chang, Yu-Cheng; Chang, Yang; Fernández Fernández, Francisco Javier; Wang, Yu-Kai; Sanz Delgado, José Antonio; Pereira Dimuro, Graçaliz; Lin, Chin-Teng; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasShow more Brain–computer interface technologies, such as steady-state visually evoked potential, P300, and motor imagery are methods of communication between the human brain and the external devices. Motor imagery–based brain–computer interfaces are popular because they avoid unnecessary external stimulus. Although feature extraction methods have been illustrated in several machine intelligent systems in motor imagery-based brain–computer interface studies, the performance remains unsatisfactory. There is increasing interest in the use of the fuzzy integrals, the Choquet and Sugeno integrals, that are appropriate for use in applications in which fusion of data must consider possible data interactions. To enhance the classification accuracy of brain-computer interfaces, we adopted fuzzy integrals, after employing the classification method of traditional brain–computer interfaces, to consider possible links between the data. Subsequently, we proposed a novel classification framework called the multimodal fuzzy fusion-based brain-computer interface system. Ten volunteers performed a motor imagery-based brain-computer interface experiment, and we acquired electroencephalography signals simultaneously. The multimodal fuzzy fusion-based brain-computer interface system enhanced performance compared with traditional brain–computer interface systems. Furthermore, when using the motor imagery-relevant electroencephalography frequency alpha and beta bands for the input features, the system achieved the highest accuracy, up to 78.81% and 78.45% with the Choquet and Sugeno integrals, respectively. Herein, we present a novel concept for enhancing brain–computer interface systems that adopts fuzzy integrals, especially in the fusion for classifying brain–computer interface commands.Show more Publication Open Access N-dimensional admissibly ordered interval-valued overlap functions and its influence in interval-valued fuzzy rule-based classification systems(IEEE, 2021) Da Cruz Asmus, Tiago; Sanz Delgado, José Antonio; Pereira Dimuro, Graçaliz; Callejas Bedregal, Benjamin; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasShow more Overlap functions are a type of aggregation functions that are not required to be associative, generally used to indicate the overlapping degree between two values. They have been successfully used as a conjunction operator in several practical problems, such as fuzzy rulebased classification systems (FRBCSs) and image processing. Some extensions of overlap functions were recently proposed, such as general overlap functions and, in the interval-valued context, n-dimensional interval-valued overlap functions. The latter allow them to be applied in n-dimensional problems with interval-valued inputs, like interval-valued classification problems, where one can apply interval-valued FRBCSs (IV-FRBCSs). In this case, the choice of an appropriate total order for intervals, like an admissible order, can play an important role. However, neither the relationship between the interval order and the n-dimensional interval-valued overlap function (which may or may not be increasing for that order) nor the impact of this relationship in the classification process have been studied in the literature. Moreover, there is not a clear preferred n-dimensional interval-valued overlap function to be applied in an IV-FRBCS. Hence, in this paper we: (i) present some new results on admissible orders, which allow us to introduce the concept of n-dimensional admissibly ordered interval-valued overlap functions, that is, n-dimensional interval-valued overlap functions that are increasing with respect to an admissible order; (ii) develop a width-preserving construction method for this kind of function, derived from an admissible order and an n-dimensional overlap function, discussing some of its features; (iii) analyze the behaviour of several combinations of admissible orders and n-dimensional (admissibly ordered) interval-valued overlap functions when applied in IV-FRBCSs. All in all, the contribution of this paper resides in pointing out the effect of admissible orders and n-dimensional admissibly ordered interval-valued overlap functions, both from a theoretical and applied points of view, the latter when considering classification problems.Show more Publication Open Access Extensión multidimensional de la integral de Choquet discreta y su aplicación en redes neuronales recurrentes(Universidad de Málaga, 2021) Ferrero Jaurrieta, Mikel; Rodríguez Martínez, Iosu; Pereira Dimuro, Graçaliz; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaShow more En este trabajo presentamos una definición de la integral de Choquet discreta n-dimensional, para fusionar datos vectoriales. Como aplicación, utilizamos estas nuevas integrales de Choquet discretas multidimensionales en la fusión de información secuencial en las redes neuronales recurrentes, mejorando los resultados obtenidos mediante el método de agregación tradicional.Show more Publication Open Access On fuzzy implications derived from general overlap functions and their relation to other classes(MDPI, 2023) Pinheiro, Jocivania; Santos, Helida; Pereira Dimuro, Graçaliz; Callejas Bedregal, Benjamin; Santiago, Regivan; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCShow more There are distinct techniques to generate fuzzy implication functions. Despite most of them using the combination of associative aggregators and fuzzy negations, other connectives such as (general) overlap/grouping functions may be a better strategy. Since these possibly non-associative operators have been successfully used in many applications, such as decision making, classification and image processing, the idea of this work is to continue previous studies related to fuzzy implication functions derived from general overlap functions. In order to obtain a more general and flexible context, we extend the class of implications derived by fuzzy negations and t-norms, replacing the latter by general overlap functions, obtaining the so-called (GO, N)-implication functions. We also investigate their properties, the aggregation of (GO, N)-implication functions, their characterization and the intersections with other classes of fuzzy implication functions.Show more Publication Open Access On some classes of directionally monotone functions(Elsevier, 2020) Bustince Sola, Humberto; Mesiar, Radko; Kolesárová, Anna; Pereira Dimuro, Graçaliz; Fernández Fernández, Francisco Javier; Díaz, Irene; Montes Rodríguez, Susana; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasShow more In this work we consider some classes of functions with relaxed monotonicity conditions generalizing some other given classes of fusion functions. In particular, directionally increasing aggregation functions (called also pre-aggregation functions), directionally increasing conjunctors, or directionally increasing implications, etc., generalize the standard classes of aggregation functions, conjunctors, or implication functions, respectively. We analyze different properties of these classes of functions and we discuss a construction method in terms of linear combinations of t-norms.Show more Publication Open Access Abstract homogeneous functions and consistently influenced/disturbed multi-expert decision making(IEEE, 2021) Santiago, Regivan; Callejas Bedregal, Benjamin; Pereira Dimuro, Graçaliz; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Fardoun, Habib; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaShow more In this paper we propose a new generalization for the notion of homogeneous functions. We show some properties and how it appears in some scenarios. Finally we show how this generalization can be used in order to provide a new paradigm for decision making theory called consistent influenced/disturbed decision making. In order to illustrate the applicability of this new paradigm, we provide a toy example.Show more Publication Open Access General grouping functions(Springer, 2020) Santos, Helida; Pereira Dimuro, Graçaliz; Da Cruz Asmus, Tiago; Sanz Delgado, José Antonio; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasShow more Some aggregation functions that are not necessarily associative, namely overlap and grouping functions, have called the attention of many researchers in the recent past. This is probably due to the fact that they are a richer class of operators whenever one compares with other classes of aggregation functions, such as t-norms and t-conorms, respectively. In the present work we introduce a more general proposal for disjunctive n-ary aggregation functions entitled general grouping functions, in order to be used in problems that admit n dimensional inputs in a more flexible manner, allowing their application in different contexts. We present some new interesting results, like the characterization of that operator and also provide different construction methods.Show more