Person: Pereira Dimuro, Graçaliz
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Pereira Dimuro
First Name
Graçaliz
person.page.departamento
Automática y Computación
person.page.instituteName
ORCID
0000-0001-6986-9888
person.page.upna
811336
Name
18 results
Search Results
Now showing 1 - 10 of 18
Publication Open Access Explainable classification methods for fish species detection using hydroacoustic data(IEEE, 2021) Costa, Lucas Tubino Bonifacio; Lucca, Giancarlo; Pereira Dimuro, Graçaliz; Borges, Eduardo N.; Emmendorfer, Leonardo R.; Weigert, Stefan Cruz; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaThis work aims to evaluate explainable classification methods for the detection of fish species from hydroacoustic data acquired by echo sounders at a region near the coastline of south and southeastern Brazil. Decision trees and fuzzy rule-based methods were adopted. The fitted models were evaluated by quality measures based on the performance of the classifiers and also by an expert which analyzed the usefulness of the rules on describing the schools. The models learned by the algorithms performed well for the available data and were able to represent the documented behavior of the species considered in the studied region, according to the literature.Publication Open Access On the generalizations of the Choquet integral for application in FRBCs(Springer, 2021) Lucca, Giancarlo; Borges, Eduardo N.; Berri, Rafael A.; Emmendorfer, Leonardo R.; Pereira Dimuro, Graçaliz; Da Cruz Asmus, Tiago; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaAn effective way to cope with classification problems, among others, is by using Fuzzy Rule-Based Classification Systems (FRBCSs). These systems are composed by two main components, the Knowledge Base (KB) and the Fuzzy Reasoning Method (FRM). The FRM is responsible for performing the classification of new examples based on the information stored in the KB. A key point in the FRM is how the information given by the fired fuzzy rules is aggregated. Precisely, the aggregation function is the component that differs from the two most widely used FRMs in the specialized literature. In this paper we provide a revision of the literature discussing the generalizations of the Choquet integral that has been applied in the FRM of a FRBCS. To do so, we consider an analysis of different generalizations, by t-norms, copulas, and by F functions. Also, the main contributions of each generalization are discussed.Publication Open Access d-XC integrals: on the generalization of the expanded form of the Choquet integral by restricted dissimilarity functions and their applications(IEEE, 2022) Wieczynski, Jonata; Fumanal Idocin, Javier; Lucca, Giancarlo; Borges, Eduardo N.; Da Cruz Asmus, Tiago; Emmendorfer, Leonardo R.; Bustince Sola, Humberto; Pereira Dimuro, Graçaliz; Automática y Computación; Automatika eta Konputazioa; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaRestricted dissimilarity functions (RDFs) were introduced to overcome problems resulting from the adoption of the standard difference. Based on those RDFs, Bustince et al. introduced a generalization of the Choquet integral (CI), called d-Choquet integral, where the authors replaced standard differences with RDFs, providing interesting theoretical results. Motivated by such worthy properties, joint with the excellent performance in applications of other generalizations of the CI (using its expanded form, mainly), this paper introduces a generalization of the expanded form of the standard Choquet integral (X-CI) based on RDFs, which we named d-XC integrals. We present not only relevant theoretical results but also two examples of applications. We apply d-XC integrals in two problems in decision making, namely a supplier selection problem (which is a multi-criteria decision making problem) and a classification problem in signal processing, based on motor-imagery brain-computer interface (MI-BCI). We found that two d-XC integrals provided better results when compared to the original CI in the supplier selection problem. Besides that, one of the d-XC integrals performed better than any previous MI-BCI results obtained with this framework in the considered signal processing problem.Publication Open Access Fuzzy integrals for edge detection(Springer, 2023) Marco Detchart, Cedric; Lucca, Giancarlo; Pereira Dimuro, Graçaliz; Da Cruz Asmus, Tiago; López Molina, Carlos; Borges, Eduardo N.; Rincon, J. A.; Julian, Vicente; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaIn this work, we compare different families of fuzzy integrals in the context of feature aggregation for edge detection. We analyze the behaviour of the Sugeno and Choquet integral and some of its generalizations. In addition, we study the influence of the fuzzy measure over the extracted image features. For testing purposes, we follow the Bezdek Breakdown Structure for edge detection and compare the different fuzzy integrals with some classical feature aggregation methods in the literature. The results of these experiments are analyzed and discussed in detail, providing insights into the strengths and weaknesses of each approach. The overall conclusion is that the configuration of the fuzzy measure does have a paramount effect on the results by the Sugeno integral, but also that satisfactory results can be obtained by sensibly tuning such parameter. The obtained results provide valuable guidance in choosing the appropriate family of fuzzy integrals and settings for specific applications. Overall, the proposed method shows promising results for edge detection and could be applied to other image-processing tasks.Publication Open Access Exploring the relationships between data complexity and classification diversity in ensembles(SciTePress, 2021) Formentín Garcia, Nathan; Tiggeman, Frederico; Borges, Eduardo N.; Lucca, Giancarlo; Santos, Helida; Pereira Dimuro, Graçaliz; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaSeveral classification techniques have been proposed in the last years. Each approach is best suited for a particular classification problem, i.e., a classification algorithm may not effectively or efficiently recognize some patterns in complex data. Selecting the best-tuned solution may be prohibitive. Methods for combining classifiers have also been proposed aiming at improving the generalization ability and classification results. In this paper, we analyze geometrical features of the data class distribution and the diversity of the base classifiers to understand better the performance of an ensemble approach based on stacking. The experimental evaluation was conducted using 32 real datasets, twelve data complexity measures, five diversity measures, and five heterogeneous classification algorithms. The results show that stacked generalization outperforms the best individual base classifier when there is a combination of complex and imbalanced data with diverse predictions among weak learners.Publication Open Access Applying d-XChoquet integrals in classification problems(IEEE, 2022) Wieczynski, Jonata; Lucca, Giancarlo; Borges, Eduardo N.; Emmendorfer, Leonardo R.; Ferrero Jaurrieta, Mikel; Pereira Dimuro, Graçaliz; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaSeveral generalizations of the Choquet integral have been applied in the Fuzzy Reasoning Method (FRM) of Fuzzy Rule-Based Classification Systems (FRBCS's) to improve its performance. Additionally, to achieve that goal, researchers have searched for new ways to provide more flexibility to those generalizations, by restricting the requirements of the functions being used in their constructions and relaxing the monotonicity of the integral. This is the case of CT-integrals, CC-integrals, CF-integrals, CF1F2-integrals and dCF-integrals, which obtained good performance in classification algorithms, more specifically, in the fuzzy association rule-based classification method for high-dimensional problems (FARC-HD). Thereafter, with the introduction of Choquet integrals based on restricted dissimilarity functions (RDFs) in place of the standard difference, a new generalization was made possible: the d-XChoquet (d-XC) integrals, which are ordered directional increasing functions and, depending on the adopted RDF, may also be a pre-aggregation function. Those integrals were applied in multi-criteria decision making problems and also in a motor-imagery brain computer interface framework. In the present paper, we introduce a new FRM based on the d-XC integral family, analyzing its performance by applying it to 33 different datasets from the literature.Publication Open Access Neuro-inspired edge feature fusion using Choquet integrals(Elsevier, 2021) Marco Detchart, Cedric; Lucca, Giancarlo; López Molina, Carlos; Miguel Turullols, Laura de; Pereira Dimuro, Graçaliz; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIt is known that the human visual system performs a hierarchical information process in which early vision cues (or primitives) are fused in the visual cortex to compose complex shapes and descriptors. While different aspects of the process have been extensively studied, such as lens adaptation or feature detection, some other aspects, such as feature fusion, have been mostly left aside. In this work, we elaborate on the fusion of early vision primitives using generalizations of the Choquet integral, and novel aggregation operators that have been extensively studied in recent years. We propose to use generalizations of the Choquet integral to sensibly fuse elementary edge cues, in an attempt to model the behaviour of neurons in the early visual cortex. Our proposal leads to a fully-framed edge detection algorithm whose performance is put to the test in state-of-the-art edge detection datasets.Publication Open Access Pre-aggregation functions: construction and an application(IEEE, 2015) Lucca, Giancarlo; Sanz Delgado, José Antonio; Pereira Dimuro, Graçaliz; Callejas Bedregal, Benjamin; Mesiar, Radko; Kolesárová, Anna; Bustince Sola, Humberto; Automática y Computación; Automatika eta KonputazioaIn this work we introduce the notion of preaggregation function. Such a function satisfies the same boundary conditions as an aggregation function, but, instead of requiring monotonicity, only monotonicity along some fixed direction (directional monotonicity) is required. We present some examples of such functions. We propose three different methods to build pre-aggregation functions. We experimentally show that in fuzzy rule-based classification systems, when we use one of these methods, namely, the one based on the use of the Choquet integral replacing the product by other aggregation functions, if we consider the minimum or the Hamacher product t-norms for such construction, we improve the results obtained when applying the fuzzy reasoning methods obtained using two classical averaging operators like the maximum and the Choquet integral.Publication Open Access Systematic review of aggregation functions applied to image edge detection(MDPI, 2023) Amorim, Miqueias; Pereira Dimuro, Graçaliz; Borges, Eduardo N.; Dalmazo, Bruno L.; Marco Detchart, Cedric; Lucca, Giancarlo; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaEdge detection is a crucial process in numerous stages of computer vision. This field of study has recently gained momentum due to its importance in various applications. The uncertainty, among other characteristics of images, makes it difficult to accurately determine the edge of objects. Furthermore, even the definition of an edge is vague as an edge can be considered as the maximum boundary between two regions with different properties. Given the advancement of research in image discontinuity detection, especially using aggregation and pre-aggregation functions, and the lack of systematic literature reviews on this topic, this paper aims to gather and synthesize the current state of the art of this topic. To achieve this, this paper presents a systematic review of the literature, which selected 24 papers filtered from 428 articles found in computer databases in the last seven years. It was possible to synthesize important related information, which was grouped into three approaches: (i) based on both multiple descriptor extraction and data aggregation, (ii) based on both the aggregation of distance functions and fuzzy C-means, and (iii) based on fuzzy theory, namely type-2 fuzzy and neutrosophic sets. As a conclusion, this review provides interesting gaps that can be explored in future work.Publication Open Access dCF-integrals: generalizing CF-integrals by means of restricted dissimilarity functions(IEEE, 2022) Wieczynski, Jonata; Lucca, Giancarlo; Pereira Dimuro, Graçaliz; Borges, Eduardo N.; Sanz Delgado, José Antonio; Da Cruz Asmus, Tiago; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA1926The Choquet integral (CI) is an averaging aggregation function that has been used, e.g., in the fuzzy reasoning method (FRM) of fuzzy rule-based classification systems (FRBCSs) and in multicriteria decision making in order to take into account the interactions among data/criteria. Several generalizations of the CI have been proposed in the literature in order to improve the performance of FRBCSs and also to provide more flexibility in the different models by relaxing both the monotonicity requirement and averaging conditions of aggregation functions. An important generalization is the CF -integrals, which are preaggregation functions that may present interesting nonaveraging behavior depending on the function F adopted in the construction and, in this case, offering competitive results in classification. Recently, the concept of d-Choquet integrals was introduced as a generalization of the CI by restricted dissimilarity functions (RDFs), improving the usability of CIs, as when comparing inputs by the usual difference may not be viable. The objective of this article is to introduce the concept of dCF -integrals, which is a generalization of CF -integrals by RDFs. The aim is to analyze whether the usage of dCF -integrals in the FRM of FRBCSs represents a good alternative toward the standard CF -integrals that just consider the difference as a dissimilarity measure. For that, we consider six RDFs combined with five fuzzy measures, applied with more than 20 functions F . The analysis of the results is based on statistical tests, demonstrating their efficiency. Additionally, comparing the applicability of dCF -integrals versus CF -integrals, the range of the good generalizations of the former is much larger than that of the latter.